Time Periodic Electroosmotic Flow of The Generalized Maxwell Fluids in a Semicircular Microchannel  被引量:1

Time Periodic Electroosmotic Flow of The Generalized Maxwell Fluids in a Semicircular Microchannel

在线阅读下载全文

作  者:包丽平 菅永军 长龙 苏洁 张海燕 刘全生 

机构地区:[1]School of Mathematical Science,Inner Mongolia University [2]School of Mathematics and Statistics,Inner Mongolia University of Finance and Economics [3]College of Mathematical Science,Baotou Teacher's College

出  处:《Communications in Theoretical Physics》2013年第5期615-622,共8页理论物理通讯(英文版)

基  金:Supported by the National Natural Science Foundation of China under Grant Nos.11062005, 11202092;Opening Fund of State Key Laboratory of Nonlinear Mechanics, the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region;the Natural Science Foundation of Inner Mongolia under Grant Nos.2010BS0107, 2012MS0107;the Research Start up Fund for Excellent Talents at Inner Mongolia University under Grant No.Z20080211;the Natural Science Key Fund of Inner Mongolia under Grant No.2009ZD01

摘  要:Analytical solutions are presented using method of separation of variables for the time periodic electroosmotic flow (EOF) of linear viscoelastic fluids in semicircular microchannel. The linear viscoelastic fluids used here are described by the general Maxwell model. The solution involves analytically solving the linearized Poisson-Boltzmann (P -B) equation, together with the Cauchy momentum equation and the general Maxwell constitutive equation. By numerical computations, the influences of electric oscillating Reynolds number Re and Deborah number De on velocity amplitude are presented. For small Re, results show that the larger velocity amplitude is confined to the region near the charged wall when De is small. With the increase of the Deborah number De, the velocity far away the charged wall becomes larger for large Deborah number De. However, for larger Re, the oscillating characteristic of the velocity amplitude occurs and becomes significant with the increase of De, especially for larger Deborah number.

关 键 词:time periodic EOF generalized Maxwell fluids semi-circular micro-channel oscillating Reynolds number Deborah number 

分 类 号:O357.3[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象