检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《弹箭与制导学报》2013年第2期125-128,132,共5页Journal of Projectiles,Rockets,Missiles and Guidance
摘 要:针对视频图像,提出了一种两步二进制位操作的目标识别跟踪算法。该算法基于改进的二进制鲁棒角点算法(BRISK),对特征描述符建立方法及匹配算法进行了改进:提出了采样点对选择策略和幅值-旋转两级描述符的建立方法;在特征点匹配阶段,提出"移位"结合"异或"的两步位操作特征匹配算法,并通过部分匹配及检测汉明重量阈值的方式进一步加快算法执行速度。实验结果表明,该改进方法具有较快的运算速度,目标平均跟踪速度达到80fps以上,且内存需求量小,更好的满足了视频图像目标实时识别跟踪的应用要求。Aiming at the target recognition and tracking within video image,a combined two step bits operation algorithm which based on an improved binary robust invariant scalable keypoints(BRISK) algorithm was proposed.The improvements include descriptor building and feature matching methods.During descriptor building,a point pair selection strategy for reducing relativity and scope-rotation two steps feature descriptor were put forward.In feature matching stage,the algorithm which combined 'SHIFT'-'XOR' binary operations was used.To further improve feature matching speed,an accelerated method with partial matching and Hamming weight threshold checking was introduced.The result of experiments demonstrate that the proposed algorithm achieves the average target tracking speed of 80 frames per-second,which is faster than other corner feature algorithms.Therefore,it could meet the demand of real-time target recognition and tracking from video image more effectively.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28