检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海大学理学院,上海200444 [2]上海市天体物理重点实验室,上海200234
出 处:《上海大学学报(自然科学版)》2013年第2期176-180,共5页Journal of Shanghai University:Natural Science Edition
基 金:上海市自然科学基金资助项目(09ZR1410900)
摘 要:测量中子星表面辐射谱的引力红移被认为是探究这类致密天体基本物理特性最为直接有效的手段.但是,脉冲星、磁星这些强磁化中子星表面的辐射红移不仅源于引力的作用,还需要考虑星体表面的磁化等离子体以及由超强磁场所诱导的量子电动力学(quantum electrodynamics,QED)真空极化效应对辐射的电磁作用.运用Gordon有效度规理论研究磁化等离子体以及QED真空极化效应对星体辐射的影响.计算结果表明,一般情况下对辐射引力红移的修正起主要作用的是星体表面的磁化等离子体,但在某些特定情况下,还必须考虑QED真空极化效应的作用.Measuring the gravitational redshift of neutron star emission lines is the most effective and feasible method for determining fundamental properties of these compact objects. It is found that redshift of emission lines of pulsars and magnetars is produced not only by the gravitational field but also by surface magnetoplasma and quantum electrodynamics (QED) vacuum polarization effect induced by the super-strong magnetic field. The effect on the stellar emission caused by magnetoplasma and quantum vacuum polarization is studied within the framework of Gordon's effective metric theory. It is shown that modification of gravitational redshift is mainly caused by magnetoplasma, and contributions of the QED vacuum polarization effect should also be taken into account in some particular cases.
关 键 词:脉冲星 磁星 引力红移 磁化等离子体 量子电动力学真空极化效应
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7