检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《灌溉排水学报》2013年第2期134-137,共4页Journal of Irrigation and Drainage
基 金:北京市教育委员会共建项目建设计划科学研究与科研基地建设项目(2008BJKY01)
摘 要:以土壤10、30、50cm深度处的土壤墒情各当前和历史数据不同组合为输入,以30cm处1h后的土壤墒情为预测输出,建立了基于BP神经网络的单因素土壤墒情预测模型。结果表明,模型预测误差约为10%,取得了较好的预测效果。A soil moisture forecast model with single factor, based on BP neural network, was eatablished by taking different combinations of current and past soil moisture contents at a depth of 10 cm, 30 cm and 50 cm as input, and the soil moisture content an hour later at a depth of 30 cm as output. Results showed that the prediction error was about 10%, and the forecast model obtained better forecasting results. It could provided a new way for the establishment of soil moisture prediction model, and laid the foundation for precision irrigation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.214