拓扑一致降标与单值延拓性质  

Topological uniform descent and the single valued extension property

在线阅读下载全文

作  者:于维[1] 曹小红[1] 

机构地区:[1]陕西师范大学数学与信息科学学院,陕西西安710062

出  处:《山东大学学报(理学版)》2013年第4期10-14,共5页Journal of Shandong University(Natural Science)

基  金:陕西师范大学中央高校基本科研业务费资助项目(GK200901015)

摘  要:设H为Hilbert空间。算子T∈B(H)称作有单值延拓性质,若对任意一个开集U■C,满足方程(T-λI)f(λ)=0(λ∈U)的惟一的解析函数为零函数。若存在整数d∈N使得当n≥d时,N(Tn)+R(T)=N(Td)+R(T)并且R(Tn)在R(Td)的算子值域拓扑中闭,称T当n≥d时有拓扑一致降标。本文给出了拓扑一致降标与单值延拓性质之间的关系,并利用算子的拓扑一致降标性质研究了单值延拓性质的稳定性。An operator T ∈ B(H) is said to have the single valued extension property. If for every open set U C, the only analytic solution f: U→X of the equation ( T - λI)f( λ∈U ) = 0 for all A e U is zero function on U. If there is d ∈ N such that N( Trn ) + R (T) = N(T^d ) + R (T) and R ( T^n ) is also closed in the operator range topological on R ( T^d ) for n ≥ d, T∈ B(H) is said to have the topological uniform descent (TUD for brevity) for n t〉 d. In this paper, the relation between the single valued extension property and the topological uniform descent is considered. Using the property of the topological uniform descent, we investigate the stability of the single-valued extension property.

关 键 词:拓扑一致降标 单值延拓性质 紧摄动 

分 类 号:O177.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象