检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Farhad HSSEINOV
机构地区:[1]Department of Economics, Bilkent University
出 处:《Acta Mathematica Sinica,English Series》2013年第6期1185-1198,共14页数学学报(英文版)
摘 要:The paper studies a relaxation of the basic multidimensional variational problem, when the class of admissible functions is endowed with the Lipschitz convergence introduced by Morrey. It is shown that in this setup, the integral of a variational problem must satisfy a classical growth condition, unlike the case of uniform convergence. The relaxations constructed here imply the existence of a Lipschitz convergent minimizing sequence. Based on this observation, the paper also shows that the Lavrentiev phenomenon does not occur for a class of nonconvex problems.The paper studies a relaxation of the basic multidimensional variational problem, when the class of admissible functions is endowed with the Lipschitz convergence introduced by Morrey. It is shown that in this setup, the integral of a variational problem must satisfy a classical growth condition, unlike the case of uniform convergence. The relaxations constructed here imply the existence of a Lipschitz convergent minimizing sequence. Based on this observation, the paper also shows that the Lavrentiev phenomenon does not occur for a class of nonconvex problems.
关 键 词:Multidimensional variational problem RELAXATION Lavrentiev phenomenon
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33