类不均衡的半监督高斯过程分类算法  被引量:18

Semi-supervised Gaussian process classification algorithm addressing the class imbalance

在线阅读下载全文

作  者:夏战国[1] 夏士雄[1] 蔡世玉[1] 万玲[1] 

机构地区:[1]中国矿业大学计算机科学与技术学院,江苏徐州221116

出  处:《通信学报》2013年第5期42-51,共10页Journal on Communications

基  金:国家自然科学基金资助项目(50674086);国家教育部博士点基金资助项目(20110095110010)~~

摘  要:针对传统的监督学习方法难以解决真实数据集标记信息少、训练样本集中存在类不均衡的问题,提出了类不均衡的半监督高斯过程分类算法。算法引入自训练的半监督学习思想,结合高斯过程分类算法计算后验概率,向未标记数据中注入类标记以获得更多准确可信的标记数据,使得训练样本的类分布相对平衡,分类器自适应优化以获得较好的分类效果。实验结果表明,在类不均衡的训练样本及标记信息过少的情况下,该算法通过自训练分类器获得了有效标记,使分类精度得到了有效提高,为解决类不均衡数据分类提供了一个新的思路。The traditional supervised learning is difficult to deal with real-world datasets with less labeled information when the training sets class is imbalanced. Therefore, a new semi-supervised Gaussian process classification of address- ing was proposed. The semi-supervised Gaussian process was realized by calculating the posterior probability to obtain more accurate and credible labeled data, and embarking from self-training semi-supervised methods to add class label into the unlabeled data. The algorithm makes the distribution of training samples relatively balance, so the classifier can adaptively optimized to obtain better effect of classification. According to the experimental results, when the circum- stances of training set are class imbalance and much lack of label information, The algorithm improves the accuracy by obtaining effective labeled in comparison with other related works and provides a new idea for addressing the class im- balance is demonstrated.

关 键 词:类不均衡 半监督 高斯过程分类 自训练 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象