检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机仿真》2013年第5期213-216,共4页Computer Simulation
基 金:河南省科技攻关项目(2102210518);河南省教育厅科学技术研究重点项目(2A520042)
摘 要:研究入侵检测问题,针对网络免疫系统检测器训练速度慢、网络系统自适应性差和阈值量化等问题,提出了免疫多A-gent的网络监控系统模型。在模型中,首先以抗体激活阈值为度量对网络事务集进行自体、非自体分类和网络成熟检测器的生成;然后对成熟检测器通过克隆优选策略和检测器影响权重函数进行分布式网络系统的成熟检测器筛选与优化,依据免疫系统的初次耐受应答生成能够对非自体抗原进行识别的记忆检测器;最后利用记忆检测器对实时获取的网络系统窗口数据进行抗原识别。仿真结果表明,提出的算法具有较好的检测率和较低的误测率,同时有效的降低了检测器的训练时间。In order to solver the problem of network immune system detector slow training speed, network system adaptability difference and threshold value quantification, an agent immune network monitoring system model was pro- posed. In this model, firstly, the network transaction was sorted as antilogous and non-antilogous, and the network mature detector was generated with the antibody activation threshold as a measurement. Then, through cloning optimi- zation strategy and detector influence weighting function, the mature detector was screened and optimized. According to the immune system's first tolerance response, the memory detector was generated to recognize non-autoantibody, Finally, the memory detector was used to recognize antigen form the network system window data obtained in real- time. The simulation results show that this algorithm has higher detection rate and lower false rate of measurement, and at the same time, effectively reduce the training time of the detector.
分 类 号:TP693[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117