检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李大钟[1] 郑榕明[1] 王金安[2] 杨毅[1] 李娜[1]
机构地区:[1]香港理工大学土木与结构工程系 [2]北京科技大学土木与环境工程系,北京100083
出 处:《岩土工程学报》2013年第5期922-929,共8页Chinese Journal of Geotechnical Engineering
基 金:香港理工大学博士基金项目(RPT 3 Ph.D.Program of PolyU);香港理工大学资助项目(G-U947)
摘 要:为了探讨有限元法极限分析的网格自适应以及锥优化算法在Mohr-Coulomb材料极限分析中的应用,以屈服准则残余和变形为依据提出针对Mohr-Coulomb材料极限分析的有限元自适应策略。对局部网格自适应结合非结构三角形网格在数值极限分析中的表现进行了探讨。通过基于有限元的极限分析方法结合网络自适应寻找潜在滑移面,从而极大程度地提高了数值计算精度。数值算例证明了所提出极限分析网格自适应准则的有效性以及在岩土极限分析中的应用前景。Refinement strategy based on the yield function slack and deformation is proposed for the finite-element-based limit analysis (FELA) of Mohr-Coulomb materials. Performance of the local mesh adaptation for the unstructured mesh is examined. The potential slip surface is traced by the adaptive procedure incorporated in the FELA such that the accuracy of the obtained bound solution is dramatically improved. The efficiency and the validity of the proposed strategy are well backed up by results of applications in two classical stability problems in geomechanics, namely, the determination of the bearing capacity of strip footing on weightless soil mass and the critical height of a critical cut. The time required in the computation is provided as well which suggests that the numerical limit analysis is both practical and necessary with the newly developed local mesh adaptation and the second-order cone programming. The obtained results reflect the promising future of the FELA as an alternative to the conventional approaches in the stability analysis in geotechnical engineering.
关 键 词:极限分析 有限元 自适应 MOHR-COULOMB
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.94