检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:毛先成[1,2] 邹品娟[1,2] 曹芳[1,2] 胡超[1,2] 张宝一[1,2] 周尚国[3]
机构地区:[1]中南大学有色金属成矿预测教育部重点实验室,长沙410083 [2]中南大学地球科学与信息物理学院,长沙410083 [3]中国冶金地质总局,北京100025
出 处:《测绘科学》2013年第3期18-21,共4页Science of Surveying and Mapping
基 金:国家"十二五"科技支撑计划课题(2011BAB04B10);国家自然科学基金项目(41172297)
摘 要:本文提出一种利用线性回归分析来指导成矿有利证据层筛选及最佳临界值获取的方法,并以桂西-滇东南地区锰矿为例,在多元地学空间数据库的基础上进行了基于线性回归的证据权法的矿产资源预测研究。实例表明,线性回归分析能利用成矿信息估计矿化分布的总体趋势,其回归分析结果能反映成矿信息与矿化分布的正负相关性,结合统计分析方法指导获取的最佳临界值,不仅具有地质意义,而且具有统计意义,能在证据图层二值化时最大限度减少信息丢失。Focusing on the issue of the loss of metallogenic information when converting the evidence layers into binary layers, a method of using the linear regression analysis, i.e. the weights of evidence method based on linear regression, was proposed to guide the selection of evidence layers which are advantageous to ore-formation and obtaining the best critical value, and conducted an instance study of manganese resources prediction with this method based on the multivariate geo-spatial database by taking the western Guangxi and southeastern Yunnan as an example. The instance study indicated that the linear regression analysis could use the metallogenic in- formation to estimate the whole trend of mineralization distribution, and the result of regression analysis could reflect the positive and negative correlation between the metallogenic information and mineralization distribution, and the best critical value obtained by combi- ning the statistical analysis method has statistical significance as well as accurate geological significance, which would reduce the loss of metallogenic information at the greatest degree when converting the evidence layers into binary layers.
分 类 号:P208[天文地球—地图制图学与地理信息工程] P62[天文地球—测绘科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42