检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于文颖[1] 纪瑞鹏[1] 冯锐[1] 赵先丽[1] 武晋雯[1] 张淑杰[1] 张玉书[1]
机构地区:[1]中国气象局沈阳大气环境研究所,沈阳110016
出 处:《中国农学通报》2013年第13期56-59,共4页Chinese Agricultural Science Bulletin
基 金:公益性行业(气象)科研专项经费"森林草原病虫害气象预报与灾损评估技术"(GYHY200906028);辽宁省科技厅重大农业攻关项目"主要农业气象灾害发生规律及预警和评估机制研究"(2011210002)
摘 要:为了利用气象因子预测松毛虫的发生面积,基于辽宁省阜新县1983—2008年气象资料与松毛虫发生面积等资料进行相关分析,将筛选出的气象因子作为预报因子,通过多元回归法和人工神经网络法对松毛虫发生面积进行模拟和预测。结果表明,与松毛虫发生面积显著相关的5个气象因子包括:上一年12月平均最低温度、上一年11月平均相对湿度、上一年9月降水量、本年2月降水量和本年3月降水量;人工神经网络法的模拟和预测精度均优于多元回归法,多元回归法的预测精度58.2%,人工神经网络法的预测精度为83.6%;人工神经网络法更适用于辽宁地区松毛虫发生面积的预报。In order to forecast the occurrence area of Dendrolimus by using meteorological factors,the author analyzed the relationships between meteorological factors and occurrence area of Dendrolimus with the data from 1983 to 2008 in Fuxin County,Liaoning.The occurrence area of Dendrolimus was simulated and predict on the selected meteorological factors as forecast factors,using multiple element regression and artificial neural network methods.The results showed that:5 meteorological factors were significantly correlated with the occurrence area,including the mean minimum temperature of preceding December,the mean relative humidity of preceding November,the precipitation of preceding September,the precipitation of current February and current March.The simulation and prediction accuracy rate of the artificial neural network method was better than that of the multiple element regression method,the multiple element regression method reached over 58.2% while the artificial neural network method reached over 83.6%.The artificial neural network method was more appropriate for the occurrence area forecast of Dendrolimus in Liaoning.
分 类 号:S167[农业科学—农业气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222