检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:罗跃生[1] 国萃[1] 刘庆顺[1] 梁爽[1] 刘少刚[2]
机构地区:[1]哈尔滨工程大学理学院,哈尔滨150001 [2]哈尔滨工程大学机电工程学院,哈尔滨150001
出 处:《工程数学学报》2013年第3期317-328,共12页Chinese Journal of Engineering Mathematics
基 金:国家"948"项目(2003-4-29);中央高校基本科研业务费专项资金;哈尔滨工程大学研究生培养基金~~
摘 要:针对利用平面电容传感器测量木材含水率这一工程问题,本文给出一个能体现电介质介电常数分布情况与平面电容传感器电容量之间关系的数学模型,这是在非均匀非对称条件下建立的,它是带有连接条件和边界积分条件的三维Laplace方程.同时,本文讨论了该模型解的唯一性,并且以均匀对称情况为例,运用有限差分法对算例进行计算,分析结果并验证了该模型的合理性.由于木材等介质的含水率直接影响其介电常数,所以通过电容传感器测量电容值,可以得到木材等介电常数的分布情况,进而得到木材含水率的分布情况.该模型可应用到上述问题等更深层的实际问题中.In this paper, we propose a new mathematical model for the engineering problem of measuring the timber moisture content by a planar capacitance sensor. It could reflect the relation between the distribution of timber's dielectric permittivity and the capacitance of a planar capacitance sensor, and was established under non-uniform and non-symmetrical condi- tions. The model is a three-dimensional Laplace equation with joint conditions and boundary integral connections. At the same time, we discussed the uniqueness of solution to this equa- tion. Then an example was promoted in symmetrical conditions and calculated by the finite difference method. We analyzed the results and verified the rationality of the model. We found that the moisture content of timber directly influence the dielectric constant distribution of timber. Therefore, as long as we get the distribution of the dielectric constant, by measuring the capacitance value of a capacitance sensor, we could get the moisture content. The proposed model can be applied to other practical problems.
关 键 词:电容传感器 电容量 介电常数 木材含水率 有限差分法
分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222