检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北方工业大学,北京100044
出 处:《计算机时代》2013年第6期50-52,共3页Computer Era
摘 要:序列模式挖掘是基于关联规则的频繁项集的挖掘,其实质是在关联模型中加入时间属性。利用改进的PrefixSpan算法对客流计数系统中不同时段的数据进行挖掘分析,给出不同时段的客流高峰的频繁序列模式,对于提高客流计数系统的精度,给管理决策者调配人力,物力,财力提供技术支持,对于最大限度地发掘购物中心的潜力,提高利润,具有重要的经济意义。Sequential pattern mining is a frequent item sets mining based on association rules, and its essence is to add the time attribute to the relation model. In this paper, data in different times of passenger flow counting system is mined and analyzed by the improved PrefixSpan algorithm. Frequent sequential patterns of the peak passenger flow in the different periods are given. It has important economical meaning for improving passenger flow counting system accuracy, providing technical support for the managers to allocate human, material and financial resources, maximizing the potential of the shopping center, and increasing profits.
关 键 词:序列模式挖掘 关联模型 PREFIXSPAN算法 客流计数
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.67