检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东省高校智能信息处理重点实验室(山东工商学院),烟台264005 [2]大连海事大学信息科学技术学院,大连116026
出 处:《模式识别与人工智能》2013年第5期432-439,共8页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学基金资助项目(No.61073133;61175053;61272369;61272244)
摘 要:半监督学习中当未标注样本与标注样本分布不同时,将导致分类器偏离目标数据的主题,降低分类器的正确性.文中采用迁移学习技术,提出一种TranCo-Training分类模型.每次迭代,根据每个未标注样本与其近邻标注样本的分类一致性计算其迁移能力,并根据迁移能力从辅助数据集向目标数据集迁移实例.理论分析表明,辅助样本的迁移能力与其训练错误损失成反比,该方法能将训练错误损失最小化,避免负迁移,从而解决半监督学习中的主题偏离问题.实验表明,TranCo-Training优于随机选择未标注样本的RdCo-Training算法,尤其是给定少量的标注目标样本和大量的辅助未标注样本时.When unlabeled data draw from different distributions compared with labeled data in semi-supervise learning, the topic biases the target domain and the performance of semi-supervised classifier decreases. The transfer technique is applied to improve the performance of semi-supervised learning in this paper. An enhanced categorization model called TranCo-training is studied which combines transfer learning techniques with co-training methods. The transferability of each unlabeled instance is computed by an important component of TranCo-training according to the consistency with its labeled neighbors. At each iteration, unlabeled instances are transferred from auxiliary dataset according to their transfer ability. Theoretical analysis indicates that transfer ability of an unlabeled instance is inversely proportional to its training error, which minimizes the training error and avoids negative transfer. Thereby, the problem of topic bias in semi-supervised learnin~ is solved. The experimental results show that TranCo-training algorithm achieves better performance than the RdCo-training algorithm when a few labeled data on target domain and abundant unlabeled data on auxiliary domain are provided.
关 键 词:迁移学习 半监督学习 协同训练 朴素贝叶斯 文本分类
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145