机构地区:[1]Department of Electronic Engineering,Fudan University
出 处:《Science China(Physics,Mechanics & Astronomy)》2013年第7期1310-1316,共7页中国科学:物理学、力学、天文学(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant No. 11174060);the Ph.D. Programs Foundation of the Ministry of Education of China(Grant Nos. 20090071110066,20110071130004);the Key Science and Technology Program of Shanghai(Grant No. 09441900400);the Program for New Century Excellent Talents in University(Grant No. NCET-10-0349)
摘 要:This study examined how the signals of interest (SOI) effect on the backscattering measurement numerically based on 3-D finite-difference time-domain (FDTD) method. High resolution microstructure mappings of bovine cancellous bones provided by micro-CT were used as the input geometry for simulations. Backscatter coefficient (BSC), integrated backscatter coefficient (IBC) and apparent integrated backscatter (AIB) were calculated with changing the start (L1) and duration (L2) of the SOl. The results demonstrated that BSC and IBC decrease as L1 increases, and AIB decreases more rapidly as L1 increases. The backscattering parameters increase with fluctuations as a function of L2 when L2 is less than 6 mm. However, BSC and IBC change little as L2 continues to increase, while AIB slowly decreases as L2 continues to increase. The results showed how the selections of the SOI effect on the backscattering measurement. An explicit standard for SOl selection was proposed in this study and short L1 (about 1.5 mm) and appropriate L2 (6 mm-12 mm) were recommended for the calculations of backscattering parameters.This study examined how the signals of interest (SOI) effect on the backscattering measurement numerically based on 3-D finite-difference time-domain (FDTD) method. High resolution microstructure mappings of bovine cancellous bones provided by micro-CT were used as the input geometry for simulations. Backscatter coefficient (BSC), integrated backscatter coefficient (IBC) and apparent integrated backscatter (AIB) were calculated with changing the start (L1) and duration (L2) of the SOI. The results demonstrated that BSC and IBC decrease as L1 increases, and AIB decreases more rapidly as L1 increases. The backscattering parameters increase with fluctuations as a function of L2 when L2 is less than 6 mm. However, BSC and IBC change little as L2 continues to increase, while AIB slowly decreases as L2 continues to increase. The results showed how the selections of the SOI effect on the backscattering measurement. An explicit standard for SOI selection was proposed in this study and short L1 (about 1.5 mm) and appropriate L2 (6 mm-12 mm) were recommended for the calculations of backscattering parameters.
关 键 词:ultrasonic backscattering cancellous bone FDTD simulation signals of interest backscattering parameters
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...