检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张素香[1] 刘建明[1] 赵丙镇[1] 曹津平[1]
机构地区:[1]国网信息通信有限公司,北京市宣武区100761
出 处:《电网技术》2013年第6期1542-1546,共5页Power System Technology
基 金:国家863高技术基金项目(智能配用电信息及通信支撑技术研究与开发;2011AA05A116);2011年国家科技重大专项(泛在网络下多终端协同的网络控制平台及关键技术;2011ZX03005-004-01)~~
摘 要:对智能小区的居民用电行为展开研究,基于云计算平台和并行k-means聚类算法,建立了峰时耗电率、负荷率、谷电系数等时间序列特征,并采用熵权法计算各类特征权重,实验数据来自已建的智能小区中的600名用户。实验结果表明,智能小区的居民用户被分成空置房、上班族、上班族+老人、老人家庭、商业用户等5类用户,聚类的准确率达到了91.2%,证明文中基于云计算平台和并行k_means聚类算法的居民用电行为分析模型是有效的。To research residential electricity consumption behavior in intelligent residential area, based on cloud computing platform and parallel k-means clustering algorithm the time series features such as electricity consumption rate during peak hour, load rate, valley load coefficient, namely the ratio of electricity consumption during valley hour to total electricity consumption, and so on are established and the weights of various features are calculated by entropy weight method. Experimental data is from 600 users living in a certain built smart community. Experimental results Show that the residential users in the smart community are divided into five categories, i.e., vacant dwellings, office staff, office staff living with elders, aged families and commercial customer, and the clustering accuracy reaches 91.2%, and thus it is proved that the proposed model for residential electricity consumption behavior analysis is correct and effective.
分 类 号:TM721[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70