节块积分方法求解圆柱几何对流扩散方程  被引量:1

Nodal Integral Method for Convection-Diffusion Equation in Cylindrical Geometry

在线阅读下载全文

作  者:邓志红[1] 孙玉良[1] 李富[1] Rizwan-uddin 

机构地区:[1]清华大学核能与新能源技术研究院,北京100084 [2]University of Illinois at Urbana-Champaign,Urbana 61801,USA

出  处:《原子能科学技术》2013年第B06期25-28,共4页Atomic Energy Science and Technology

基  金:国家重大科技专项经费资助项目(ZX06901)

摘  要:为改进高温气冷堆中热工场方程的计算方法,研究了求解圆柱几何对流扩散方程的节块积分方法。针对圆柱几何下的r向横向积分方程的特殊性,提出了两种可行的近似方法——移项处理和常数近似,并进行相应的误差分析。数值计算结果表明:节块积分方法求解圆柱几何对流扩散方程的数值解具有迎风特性,一维和多维问题的计算结果均与解析解符合得很好;当节块在r向靠近零点时,常数近似带来的误差较移项处理带来的误差小,但当节块远离零点时,二者误差基本相当。In order to improve the calculation performance of thermal-hydraulic problems in high-temperature gas-cooled reactor(HTGR),the nodal integral method(NIM) was applied to solve the steady-state convection-diffusion equation in cylindrical geometry.Two kinds of treatments were proposed to solve the challenge of r-directed transverse integrated equation which was brought by cylindrical geometry,and corresponding error analyses were presented.The results show that the inherent upwind characteristic of NIM in solving the cylindrical convection-diffusion equation is proved,and the results of NIM agree very well with the analytical solutions for one-dimensional problem and multi-dimensional problem.When nodes close to the original point in r direction,constant approximation has better accuracy over treatment of moving terms,however,when nodes away from original point,both methods show almost the same accuracy.

关 键 词:节块积分方法 移项处理 常数近似 

分 类 号:TL329.2[核科学技术—核技术及应用]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象