机构地区:[1]Department of Environmental Sciences,Zhejiang University [2]Zhejiang Taohuayuan Environmental Engineering Company Limited [3]Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control
出 处:《Journal of Environmental Sciences》2013年第5期908-915,共8页环境科学学报(英文版)
基 金:supported by the National Natural Science Foundation of China (No. 20890111,21137003,20977075);the National High-Tech Research and Development Program (863) of China (No. 2010AA064902)
摘 要:Air pollution surveys of formaldehyde(HCHO) were conducted in 2324 rooms decorated within one year in 2007-2009 in Hangzhou,China.The mean HCHO concentration(C HCHO) was 0.107 ± 0.095 mg/m 3,and 38.9% of samples exceeded the Chinese National Standard GB 50325-2010.Over the past 3 years,the C HCHO decreased with time(p 〈 0.05).Relationships of potential factors to indoor C HCHO were also evaluated.C HCHO was related to temperature(T),relative humidity(RH),time duration of the windows and doors being closed before sampling(DC),time duration from the end of decoration to sampling(DR) and source characteristics(d).A model to relate indoor C HCHO to these five factors(T,RH,DC,DR,d) was established based on 298 samples(R 2 = 0.87).Various factors contributed to C HCHO in the following order:T,43.7%;d,31.0%;DC,10.2%;DR,8.0%;RH,7.0%;specifically,meteorological conditions(i.e.,RH plus T) accounted for 50.7%.The coefficient of T and RH,R TH,was proposed to describe their combined influence on HCHO emission,which also had a linear relationship(R 2 = 0.9387) with HCHO release in a simulation chamber test.In addition,experiments confirm that it is a synergistic action as T and RH accelerate the release of HCHO,and that is a significant factor influencing indoor HCHO pollution.These achievements could lead to reference values of measures for the efficient reduction of indoor HCHO pollution.Air pollution surveys of formaldehyde(HCHO) were conducted in 2324 rooms decorated within one year in 2007-2009 in Hangzhou,China.The mean HCHO concentration(C HCHO) was 0.107 ± 0.095 mg/m 3,and 38.9% of samples exceeded the Chinese National Standard GB 50325-2010.Over the past 3 years,the C HCHO decreased with time(p 〈 0.05).Relationships of potential factors to indoor C HCHO were also evaluated.C HCHO was related to temperature(T),relative humidity(RH),time duration of the windows and doors being closed before sampling(DC),time duration from the end of decoration to sampling(DR) and source characteristics(d).A model to relate indoor C HCHO to these five factors(T,RH,DC,DR,d) was established based on 298 samples(R 2 = 0.87).Various factors contributed to C HCHO in the following order:T,43.7%;d,31.0%;DC,10.2%;DR,8.0%;RH,7.0%;specifically,meteorological conditions(i.e.,RH plus T) accounted for 50.7%.The coefficient of T and RH,R TH,was proposed to describe their combined influence on HCHO emission,which also had a linear relationship(R 2 = 0.9387) with HCHO release in a simulation chamber test.In addition,experiments confirm that it is a synergistic action as T and RH accelerate the release of HCHO,and that is a significant factor influencing indoor HCHO pollution.These achievements could lead to reference values of measures for the efficient reduction of indoor HCHO pollution.
关 键 词:FORMALDEHYDE indoor air quality EMISSION factor analysis TEMPERATURE relative humidity
分 类 号:X831[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...