高维特征选择方法在近红外光谱分类中的应用  被引量:18

High dimensional feature selection in near infrared spectroscopy classification

在线阅读下载全文

作  者:秦玉华[1,2] 丁香乾[1] 宫会丽[1] 

机构地区:[1]中国海洋大学信息科学与工程学院,山东青岛266100 [2]青岛科技大学信息科学技术学院,山东青岛266061

出  处:《红外与激光工程》2013年第5期1355-1359,共5页Infrared and Laser Engineering

基  金:科技部创新基金(06C26213710334)

摘  要:针对卷烟近红外光谱高噪和高冗余特点,提出了一种基于随机森林(RF)和主成分分析(PCA)的特征优选方法 RF-PCA,建立了5种不同质量级别卷烟的分类模型,并和其他方法进行了比较。该方法能够有效地对高维数据样本进行分类,用于甄别卷烟品质真伪。特征选择可以过滤与分类不相关的特征,而通过PCA方法可以消除冗余特征的不良影响,并可进一步降低特征维数。实验表明:RF-PCA方法能有效地剔除近红外光谱数据中的噪声特征和冗余特征,提高了分类效率。With regard to the large number of irrelevant and redundant features exist in the near infrared spectra, a novel feature selection method based on random forest and principal component analysis (RF- PCA) was proposed in this paper. By using the RF-PCA, a classification model of cigarettes qualitative evaluation was developed and also compared with other methods. The result shows that RF-PCA effectively classifies the samples of high dimensional data and can be used to evaluate quality and authenticity of the cigarettes. RF feature selection removes irrelevant features of the classification, while PCA further eliminates the influence of redundant features and also reduces the feature dimensionalities. The experiments show that RF-PCA effectively removes noise and redundant features in the NIR spectra and the classification accuracy is improved as well.

关 键 词:近红外光谱 特征选择 随机森林 主成分分析 卷烟 

分 类 号:O433.4[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象