检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京理工大学机械工程学院,江苏南京210094 [2]海军驻沈阳弹药专业军事代表处,辽宁沈阳110045
出 处:《计算机仿真》2013年第6期24-28,156,共6页Computer Simulation
基 金:国家自然科学基金资助课题(51006052)
摘 要:随着智能弹药的发展,一维弹道修正弹在提高射击精度方面的效果日益受到关注。为了计算一维弹道修正弹的射程修正能力,采用计算流体力学方法仿真得到其阻力参数;采用Logistic曲线,利用计算出的阻力系数,拟合出了修正状态下弹丸的阻力曲线;最后,采用四阶龙格-库塔法求解质点弹道微分方程,并详细分析了弹道修正能力。以某口径一维弹道修正弹为例,求解结果表明,所采用的方案可以有效快速地计算出一维弹道修正弹丸的射程修正能力。As the progress of the intelligent ammunition, one- dimension trajectory correction projectile is worth being concerned about because it can reduce the deviation of trajectory. In order to calculate the ability of the range correction, computational fluid dynamics (CFD) was applied to calculate the drag coefficient. Then, by using a Lo- gistic model, the drag coefficient curve was fitted based on the discrete points of drag coefficient. Finally, differential equations of point mass were solved by the forth Runge - Kutta method and were presented to analyze the effects of the ability of the range correction. Taking a kind of one - dimension trajectory correction projectile as an example, a method is represented to calculate the range correction. The example shows that the method can bring in a satisfied result.
关 键 词:计算流体力学 空气阻力系数 外弹道学 弹道修正弹
分 类 号:TJ01[兵器科学与技术—兵器发射理论与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15