Insight into the Role of Lower-Layer Vertical Wind Shear in Tropical Cyclone Intensification over the Western North Pacific  被引量:5

Insight into the Role of Lower-Layer Vertical Wind Shear in Tropical Cyclone Intensification over the Western North Pacific

在线阅读下载全文

作  者:舒守娟 王元 白莉娜 

机构地区:[1]Key Laboratory of Mesoscale Severe Weather/Ministry of Education, and School of Atmospheric Sciences,Nanjing University [2]Shanghai Typhoon Institute, China Meteorological Administration

出  处:《Acta meteorologica Sinica》2013年第3期356-363,共8页

基  金:Supported by the National(Key)Basic Research and Development(973)Program of China(2009CB421502);China Meteorological Administration Special Public Welfare Research Fund(GYHY201006007);National Natural Science Foundation of China(40905020);State Key Laboratory of Severe Weather(2011LASW-B11);Funds for the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions

摘  要:Vertical wind shear fundamentally influences changes in tropical cyclone (TC) intensity. The effects of vertical wind shear on tropical cyclogenesis and evolution in the western North Pacific basin are not .well understood. We present a new statistical study of all named TCs in this region during the period 2000- 2006 using a second-generation partial least squares (PLS) regression technique. The results show that the lower-layer (between 850 hPa and 10 m above the sea surface) wind shear is more important than the commonly analyzed deep-layer shear (between 200 and 850 hPa) for changes in TC intensity during the TC intensification period. This relationship is particularly strong for westerly low-level shear. Downdrafts induced by the lower-layer shear bring low θe air into the boundary layer from above, significantly reducing values of θe in the TC inflow layer and weakening the TC. Large values of deep-layer shear over the ocean to the east of the Philippine Islands inhibit TC formation, while large values of lower-layer shear over the central and western North Pacific inhibit TC intensification. The critical value of deep-layer shear for TC formation is approximately 10 m s-1, and the critical value of lower-layer shear for TC intensification is approximately ±1.5 m s-1.Vertical wind shear fundamentally influences changes in tropical cyclone (TC) intensity. The effects of vertical wind shear on tropical cyclogenesis and evolution in the western North Pacific basin are not .well understood. We present a new statistical study of all named TCs in this region during the period 2000- 2006 using a second-generation partial least squares (PLS) regression technique. The results show that the lower-layer (between 850 hPa and 10 m above the sea surface) wind shear is more important than the commonly analyzed deep-layer shear (between 200 and 850 hPa) for changes in TC intensity during the TC intensification period. This relationship is particularly strong for westerly low-level shear. Downdrafts induced by the lower-layer shear bring low θe air into the boundary layer from above, significantly reducing values of θe in the TC inflow layer and weakening the TC. Large values of deep-layer shear over the ocean to the east of the Philippine Islands inhibit TC formation, while large values of lower-layer shear over the central and western North Pacific inhibit TC intensification. The critical value of deep-layer shear for TC formation is approximately 10 m s-1, and the critical value of lower-layer shear for TC intensification is approximately ±1.5 m s-1.

关 键 词:vertical wind shear tropical cyclone intensification western North Pacific 

分 类 号:P444[天文地球—大气科学及气象学] V321.225[航空宇航科学与技术—人机与环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象