检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京邮电大学通信与信息工程学院,南京210003 [2]南京邮电大学宽带无线通信与传感技术教育部重点实验室,南京210003
出 处:《数据采集与处理》2013年第3期274-279,共6页Journal of Data Acquisition and Processing
基 金:国家自然科学基金(60971129)资助项目
摘 要:针对语音产生的数字模型来分析清音和浊音的特点,研究了清音和浊音的压缩感知观测序列的特性,从而推出清音的压缩感知观测序列具有近似高斯信号的特性,而浊音的压缩感知观测序列具有非高斯信号的特性。基于这种特性来设计一种直接针对压缩感知观测序列、非重构的清浊音判别方法,并给出了它与重构信号清浊音判别在准确性和计算量两个方面的比较结果,解决了基于语音压缩感知观测序列重构情况下判别清浊音的高计算量问题。Based on the theory of compressed sensing, the observation sequence after compress- ing sensing is different from the Nyquist sequence, so the voicing-state identification can be a- chieved only by reconstructing the original speech signal with high complexity. The voicing- state characteristics are analyzed based on the speech digital model, and a conclusion can be drawn that the unvoiced observation sequence has the characteristics of Gaussian signal while the voiced observation sequence has the characteristics of non-Gaussian signal. According to the characteristic, a voicing-state identification algorithm of third-order accumulation is de- signed based on observation sequence, and is compared with the energy discrimination method of the reconstructing speech signal in accuracy and computing. Therefore, the problem of high complexity in voicing-state identification can be solved after reconstructing the original speech signal.
分 类 号:TN912.3[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.183