检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱秋荣[1] 武鸣[3] 陈秋[2] 周正元[4] 刘景超[1] 骆文书[1] 丁一[1] 顾淑君[1] 郭志荣[1]
机构地区:[1]苏州大学医学部公共卫生学院流行病与卫生统计教研室,215123 [2]苏州大学医学部放射生物学教研室 [3]江苏省疾病预防控制中心慢病科 [4]江苏省常熟市疾病预防控制中心
出 处:《中华内分泌代谢杂志》2013年第6期484-489,共6页Chinese Journal of Endocrinology and Metabolism
基 金:基金项目:卫生部科学研究基金资助项目(WKJ2004-2-014)
摘 要:目的探讨PPARs基因多态性及其多个SNPs之间的基因一基因交互作用与高甘油三酯性腰围(HTGW)的关系.方法该研究的820名研究对象均来自于“江苏省多代谢异常和代谢综合征综合防治研究(PMMJS)”队列人群。HTGW判定标准为腰围男性≥85cm,女性≥80cm,同时甘油三脂≥1.70mmol/L;选取PPARs3个亚型(PPARα/β/γ)的10个位点进行多态性检测,其中rs4253778使用聚合酶链反应一限制性片段长度多态性(PCR—RFLP)方法分析,其余位点应用TaqMan荧光探针法;采用logistic回归模型分析SNPs与HTGW之间的关联:应用广义多因子降维法(GMDR)分析基因-基因之间的交互作朋。结果单因素logistic回归分析显示,PPARα的rs1800206、PPARβ的rs2016520和PPARy的rs3856806均与HTGW显著关联,OR(95%CI)分别为2.48(1.75~3.52)、0.63(0.42~0.83)和1.60(1.16~2.21),这种关联即使在多变量调整后[分别为2.41(1.68~3.46)、0.58(0.41~0.79)和1.43(1.02~1.97)]也依然具有统计学意义(P〈0.05)。GMDR基因-基因交互作用分析显示4阶模型最优,不仅包含厂关联分析中显著的PPARαrs1800206.PPAR$rs2016520和PPARyrs3856806,也包括了关联分析不显著的PPARars4253778.结论PPARα/β/γ的多个SNPs即通过显著的主效应又通过相互之间的交互作用影响HTGW的发生.Objective To analyze the correlation between the 3 subtypes of PPAR genes( PPARα, PPARβ, and PPARγ) and the hypertriglyceridemic waist ( HTGW ), and to study whether there is an interaction in the 10 single nucleotide polymorphisms (SNPs) of the above 3 subtypes in causing of HTGW. Methods Eight hundred and twenty subjects for genetic polymorphism research were selected from the cohort study of PMMJS in Jiangsu province China. The HTGW was defined as a waist circumference t〉 85 cm in men, ≥ 80 cm in women, and triglyceride ≥ 1.70 mmol/L. 10 SNPs of PPARs were determined, in which the SNP( rs4253778 ) was analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) , the other SNPs were analyzed by TaqMan fluorescent probe. Logistic regression was used to analyze the relationship between gene polymorphism and HTGW, while generalized multifactor dimensionality reduction (GMDR) method was applied to analyze the gene-gene interactions. Results Single factor Logistic regression analysis showed that the SNP ( rs1800206 ) of PPARα, the SNP (rs2016520) of PPARβ and the SNP (rs3856806) of PPARγ were significantly associated with HTGW even after muhivariable adjustment [ OR ( 95 % CI) were 2.41 ( 1.68-3.46 ), 0. 58 (0. 4143.79 ), and 1.43 ( 1.02-1.97 ), respectively ]. Gene-gene interactions of GMDR model adjusted by the covariates indicated that the four-locus model was the best model of this study, including SNP( rs253778, rs1800206, rs2016520 and rs3856806). Conclusion The SNPs from PPARα/β/γof PPARs may contribute to the risk of HTGW via both the main effect as well as the interaction.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28