A SIMPLE DISCRETE-TIME ANALOGUE PRESERVING THE GLOBAL STABILITY OF A CONTINUOUS SIRS EPIDEMIC MODEL  

A SIMPLE DISCRETE-TIME ANALOGUE PRESERVING THE GLOBAL STABILITY OF A CONTINUOUS SIRS EPIDEMIC MODEL

在线阅读下载全文

作  者:YOICHI ENATSU YOSHIAKI MUROYA 

机构地区:[1]Graduate School of Fundamental Science and Engineering Waseda University, 3-~10hkubo, Shinjuku-ku Tokyo 169-8555, Japan [2]Department of Mathematics, Waseda University3-4-10hkubo, Shinjuku-ku, Tokyo 169-8555, Japan

出  处:《International Journal of Biomathematics》2013年第2期1-17,共17页生物数学学报(英文版)

摘  要:In this paper, we consider the backward Euler discretization derived from a continuous SIRS epidemic model, which contains a remaining problem that our discrete model has two solutions for infected population; one is positive and the other is negative. Under an additional positiveness condition on infected population, we show that the backward Euler discretization is one of simple discrete-time analogue which preserves the global asymptotic stability of equilibria of the corresponding continuous model.

关 键 词:SIRS epidemic model backward Euler method global asymptotic stability. 

分 类 号:Q141[生物学—生态学] TP273.2[生物学—普通生物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象