Effect of carbon species on the reduction and melting behavior of boron-bearing iron concentrate/carbon composite pellets  被引量:12

Effect of carbon species on the reduction and melting behavior of boron-bearing iron concentrate/carbon composite pellets

在线阅读下载全文

作  者:Guang Wang Yin-gui Ding Jing-song Wang Xue-feng She Qing-guo Xue 

机构地区:[1]State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing

出  处:《International Journal of Minerals,Metallurgy and Materials》2013年第6期522-528,共7页矿物冶金与材料学报(英文版)

基  金:support by the National Natural Science Foundation of China(No.51274033)

摘  要:Iron nugget and boron-rich slag can be obtained in a short time through high-temperature reduction of boron- bearing iron concentrate by carbonaceous material, both of which are agglomerated together as a carbon composite pellet. This is a novel flow sheet for the comprehensive utilization of boron-bearing iron concentrate to produce a new kind of man-made boron ore. The effect of reducing agent species (i.e., carbon species) on the reduction and melting process of the composite pellet was investigated at a laboratory scale in the present work. The results show that, the reduction rate of the composite pellet increases from bituminite, anthracite, to coke at temperatures ranging from 950 to 1300~C. Reduction temperature has an important effect on the microstructure of reduced pellets. Carbon species also affects the behavior of reduced metallic iron particles. The anthracite-bearing composite pellet melts faster than the bituminite- bearing composite pellet, and the coke-bearing composite pellet cannot melt due to the high fusion point of coke ash. With anthracite as the reducing agent, the recovery rates of iron and boron are 96.5% and 95.7%, respectively. This work can help us get a further understanding of the new process mechanism.Iron nugget and boron-rich slag can be obtained in a short time through high-temperature reduction of boron- bearing iron concentrate by carbonaceous material, both of which are agglomerated together as a carbon composite pellet. This is a novel flow sheet for the comprehensive utilization of boron-bearing iron concentrate to produce a new kind of man-made boron ore. The effect of reducing agent species (i.e., carbon species) on the reduction and melting process of the composite pellet was investigated at a laboratory scale in the present work. The results show that, the reduction rate of the composite pellet increases from bituminite, anthracite, to coke at temperatures ranging from 950 to 1300~C. Reduction temperature has an important effect on the microstructure of reduced pellets. Carbon species also affects the behavior of reduced metallic iron particles. The anthracite-bearing composite pellet melts faster than the bituminite- bearing composite pellet, and the coke-bearing composite pellet cannot melt due to the high fusion point of coke ash. With anthracite as the reducing agent, the recovery rates of iron and boron are 96.5% and 95.7%, respectively. This work can help us get a further understanding of the new process mechanism.

关 键 词:iron ore pellets iron ore reduction BORON bituminite ANTHRACITE COKE 

分 类 号:TF046.6[冶金工程—冶金物理化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象