ADAPT模型在不同尺度土壤数据库中的预报精度——以美国俄亥俄州DarbyCreek流域为例  被引量:1

Comparison of ADAPT Model Between Different Scale Soils Data Bases on Predicted Hydrologic Responses of America Ohio Darby Creek Watershed

在线阅读下载全文

作  者:唐万龙[1] CHEN Mi Andy D Ward Eric Desmond SHANGH Dale White 

机构地区:[1]中国科学院南京土壤所,南京210008 [2]美国俄亥俄州立大学 [3]美国俄亥俄州环保局

出  处:《水土保持学报》2000年第2期15-18,35,共5页Journal of Soil and Water Conservation

基  金:美国国家自然科学基金资助项目

摘  要:在俄亥俄州的中部 Darby Creek流域 ,用 ADAPT模型预测 1991~ 1995年每日的径流数量和质量。ADAPT模型的主要输入参数来源于 MUUF(Map Unit Use File) ,其它参数来源于 ADAPT的辅助模型。辅助模型的输入数据和参数来源于公开出版物和历史气象资料等。研究目的之一是基于两种不同尺度的土壤数据库 STATSGO和 MU IR,比较 ADAPT模型在预报一个水流域的水、泥沙、养分负载的流失精度。研究结果表明 ,水和泥沙的流失预报结果没有显著的差异 ,而养分流失有微小差异 (<5% )。因 MUIR数据库的分辨率远远高于STATSGO,如果在研究一个流域范围内 ,预报结果几乎没有区别或仅有极小的差异 ,使用STATSGO土壤数据将比使用 MUDaily estimates of runoff quantity and quality for a five year period were predicted with the ADAPT model. The study was conducted on the Darby Creek watershed in central Ohio. Soils information for use with the model was developed by using MUIR and STATSGO databases in conjunction with the model input parameter generating procedure contained within the Map Unit Use File (MUUF). Other model inputs were obtained from published reports, historical climatic data, or assumed for illustration purposes. The main objective of the study was to evaluate if there is a need to use the finer resolution MUIR data versus STATSGO data to predict flow, sediment and nutrient loads. The results showed that at a watershed scale there was no significant difference between flow and sediment results obtained by using the two databases. For nutrients there was a small (< 5%) but significant difference. The fact that the differences were small, and generally not significant, is important because there is a considerable reduction in time and resources needed to conduct studies of this nature if STATSGO data is used rather than MUIR data.

关 键 词:ADAPT模型 土壤数据库 流域尺度 预报 水土流失 

分 类 号:S157.1[农业科学—土壤学] S12[农业科学—农业基础科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象