基于改进多信号矩阵束算法的电力系统低频振荡识别  被引量:11

Identification of low-frequency oscillations based on improved multi-signal matrix pencil algorithm

在线阅读下载全文

作  者:张亮[1] 张新燕[1] 王维庆[1] 

机构地区:[1]新疆大学电气工程学院,新疆乌鲁木齐830047

出  处:《电力系统保护与控制》2013年第13期26-30,共5页Power System Protection and Control

基  金:新疆维吾尔自治区科技厅高新技术基金(201132116-2);新疆维吾尔自治区科技厅自然科学基金(2011211A016);新疆大学博士基金(BS100122)

摘  要:提出了适用于电力系统低频振荡模态识别的改进多信号矩阵束算法。利用奇异值分解(Singular value decomposition,SVD)分离信号和噪声子空间,确定阶数并消除信号噪声。通过建立多信号归一化的样本函数矩阵对矩阵束算法进行改进,辨识电力系统模态。利用原始Prony法、谐波恢复的Prony法和改进的多信号矩阵束法,对理想信号和仿真系统进行分析。结果表明多信号矩阵束法的辨识精度较高,具有一定的抗噪能力,并且通过对多信号归一化的处理避免了不同类型信号叠加时较小信号的湮没,适用于低频振荡在线识别。Modem power system has become complex and the size of the nonlinear systems makes the traditional analysis method present more and more limitations. Therefore this paper introduces an improved multi-signal matrix pencil algorithm suitable for low-frequency oscillations modal identification of power system. First, the method of singular value decomposition (SVD) is used to separate the signal from the noise sub-space, confirm the order and eliminate the signal noise. And then through the establishment of multi-signal normalized experiment matrix, the matrix pencil algorithm is improved to identify power system mode. The ideal signal and simulation system are analyzed by using the original Prony method, the harmonic retrieval Prony method and the matrix pencil method. Results show that multi-signal matrix pencil method has high precision and a certain anti-noise ability. Through the normalized processing of the multi-signal, the submerging of small signals is avoided when different types of signals are overlying, thus it is suitable for low frequency oscillation on-line identification.

关 键 词:低频振荡 矩阵束算法 阻尼 电力系统 模态辨识 广域测量 

分 类 号:TM712[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象