基于v-SVR和MVPSO算法的边坡位移反分析方法及其应用  被引量:36

A NEW SLOPE DISPLACEMENT BACK ANALYSIS METHOD BASED ON v-SVR AND MVPSO ALGORITHM AND ITS APPLICATION

在线阅读下载全文

作  者:漆祖芳[1,2] 姜清辉[1,3] 周创兵[1,3] 向柏宇[4] 邵敬东[4] 

机构地区:[1]武汉大学水资源与水电工程科学国家重点实验室,湖北武汉430072 [2]长江水利委员会长江勘测规划设计研究院,湖北武汉430010 [3]武汉大学土木建筑工程学院,湖北武汉430072 [4]中国水电顾问集团成都勘测设计研究院,四川成都610072

出  处:《岩石力学与工程学报》2013年第6期1185-1196,共12页Chinese Journal of Rock Mechanics and Engineering

基  金:国家重点基础研究发展计划(973)项目(2011CB013506);国家自然科学基金重点项目(50839004)

摘  要:针对传统粒子群算法存在搜索空间有限、容易陷入局部最优点的缺陷,通过引入迁徙算子和自适应变异算子,提出基于粒子迁徙和变异的粒子群优化(MVPSO)算法。基准测试函数结果表明,改进的MVPSO算法较传统的粒子群优化算法在收敛效率上有大幅度提高,在处理非线性、多峰值的复杂优化问题中能快速地搜索,得到全局最优解。应用改进的MVPSO算法搜索最佳的支持向量机(v-SVR)模型参数,建立岩体力学参数与岩体位移之间的非线性支持向量机模型,提高v-SVR的预测精度和推广泛化性。然后,利用v-SVR模型的外推预测替代耗时的FLAC正向计算,利用改进的MVPSO算法搜索岩体力学参数的最优组合,提出v-SVR和MVPSO相结合的边坡位移反分析方法(v-SVR-MVPSO算法),与传统的BP-GA算法和v-SVR-GA算法相比,该算法在反演精度和反演效率上均有较大幅度提高。最后,将本文发展的v-SVR-MVPSO算法应用到大岗山水电站右岸边坡岩体参数反演分析,并对边坡后续开挖位移和稳定性进行预测,取得较好的效果。To address the problems of the limit search space and local optimization in traditional particle swarm optimization algorithm,a modified variation particle swarm optimization(MVPSO) algorithm is proposed based on particle migration and variation by introducing migration operator and adapting mutation operator.The results of the benchmark test functions show that the convergence rate of this MVPSO algorithm has significantly improved than the traditional particle swarm optimization algorithm.For the nonlinear and multimodal problems,the proposed MVPSO functions well in searching the global minimum.In order to establish a nonlinear relation between the mechanical parameters of rock mass and the displacements,the MVPSO algorithm is adopted to search for the most suitable parameters of the v-SVR model.The results show that the prediction accuracy and generalization ability of the v-SVR have been significantly increased.Then,the optimal v-SVR model is an alternative for the time-consuming FLAC calculations;and the MVPSO algorithm can be used to search for the best group of the mechanical parameters of rock mass.Consequently,a new displacement back analysis method is developed in combination of the v-SVR with the MVPSO algorithm.Compared with the traditional displacement back analysis methods,including BP-GA and the v-SVR-GA,the proposed method has its merits in inversion efficiency and accuracy.Finally,the new method is applied to the parametric back analysis of rock mass in the right-bank slope of Dagangshan hydropower station.Based on the back-analyzed parameters,the deformation and stability of the slope during subsequent construction period are analyzed.The results demonstrate that the proposed method has high accuracy and good applicability.

关 键 词:边坡工程 v-SVR 粒子群优化算法 改进的粒子群优化算法 位移反分析 

分 类 号:P642[天文地球—工程地质学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象