Multiple Components are Integrated to Determine Leaf Complexity in Lotus japonicus  被引量:6

Multiple Components are Integrated to Determine Leaf Complexity in Lotus japonicus

在线阅读下载全文

作  者:Zhenhua Wang Jianghua Chen Lin Weng Xin Li Xianglin Cao Xiaohe Hu Da Luo Jun Yang 

机构地区:[1]National Key Laboratory of Plant Molecular Genetics,Institute of Plant Physiology and Ecology,Shanghai Institutes for Biological Sciences,Graduate School of the Chinese Academy of Sciences,the Chinese Academy of Sciences [2]State Key Laboratory of Biocontrol,School of Life Sciences,Sun Yat-sen University

出  处:《Journal of Integrative Plant Biology》2013年第5期419-433,共15页植物学报(英文版)

基  金:supported by the National Natural Science Foundation of China(30930009);the Ministry of Agriculture of China for Transgenic Research(2011ZX08009-003);the Foundation from the Institute of Plant Physiology and Ecology,SIBS

摘  要:Transcription factors and phytohormones have been reported to play crucial roles to regulate leaf complexity among plant species. Using the compound-leafed species Lotus japonicus, a model legume plant with five visible leaflets, we characterized four independent mutants with reduced leaf complexity, proliferating floral meristem (pfm), proliferating floral organ-2 (pfo-2), fused leaflets1 (ful1) and umbrella leaflets (uml), which were further identified as loss-of-function mutants of Arabidopsis orthologs LEAFY (LFY ), UNUSUAL FLORAL ORGANS (UFO), CUP-SHAPED COTYLEDON 2 (CUC2) and PIN-FORMED 1 (PIN1), respectively. Comparing the leaf development of wild-type and mutants by a scanning electron microscopy approach, leaflet initiation and/or dissection were found to be affected in these mutants. Expression and phenotype analysis indicated that PFM/LjLFY and PFO/LjUFO determined the basipetal leaflet initiation manner in L. japonicus. Genetic analysis of ful1 and uml mutants and their double mutants revealed that the CUC2-like gene and auxin pathway also participated in leaflet dissection in L. japonicus, and their functions might influence cytokinin biogenesis directly or indirectly. Our results here suggest that multiple genes were interplayed and played conserved functions in controlling leaf complexity during compound leaf development in L. japonicus.Transcription factors and phytohormones have been reported to play crucial roles to regulate leaf complexity among plant species. Using the compound-leafed species Lotus japonicus, a model legume plant with five visible leaflets, we characterized four independent mutants with reduced leaf complexity, proliferating floral meristem (pfm), proliferating floral organ-2 (pfo-2), fused leaflets1 (ful1) and umbrella leaflets (uml), which were further identified as loss-of-function mutants of Arabidopsis orthologs LEAFY (LFY ), UNUSUAL FLORAL ORGANS (UFO), CUP-SHAPED COTYLEDON 2 (CUC2) and PIN-FORMED 1 (PIN1), respectively. Comparing the leaf development of wild-type and mutants by a scanning electron microscopy approach, leaflet initiation and/or dissection were found to be affected in these mutants. Expression and phenotype analysis indicated that PFM/LjLFY and PFO/LjUFO determined the basipetal leaflet initiation manner in L. japonicus. Genetic analysis of ful1 and uml mutants and their double mutants revealed that the CUC2-like gene and auxin pathway also participated in leaflet dissection in L. japonicus, and their functions might influence cytokinin biogenesis directly or indirectly. Our results here suggest that multiple genes were interplayed and played conserved functions in controlling leaf complexity during compound leaf development in L. japonicus.

关 键 词:Compound leaf FUSED LEAFLETS1 Lotus japonicus PROLIFERATING FLORAL ORGAN/LjUFO PROLIFERATING FLORAL MERISTEM/LjLFY UMBRELLA LEAFLETS. 

分 类 号:S688.4[农业科学—观赏园艺]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象