检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]周口师范学院计算机科学与技术学院,河南周口466001
出 处:《科技通报》2013年第6期86-88,共3页Bulletin of Science and Technology
摘 要:针对传统汽车发动机传感器网络节点故障检测效率低,抗干扰差的问题。提出了一种基于模糊能量自学习的汽车发动机传感器故障检测方法。该方法先运算传感器网络中的节点的能量,再利用基于U-H模糊模型优化方法对相关的模糊能量进行自学习,最终获取传感器网络中节点的能量算好,从而完成对汽车发动机传感器节点能量耗尽故障的有效诊断。研究结果表明,基于模糊能量自学习的发动机传感器故障诊断方法有效性高,克服了外界干扰对故障诊断的不利影响。According to the traditional motor car engine sensor network node fault detection efficiency is low,the problem of poor anti-jamming.Puts forward a based on fuzzy energy self learning car engine sensor fault detection method.The method first operation in the sensor networks node energy,and then based on U-H fuzzy model optimization method to related fuzzy energy self learning,and finally get in sensor networks node energy is good,thus completing the car engine sensor node energy depletion fault diagnosis effectively.The research results show that based on fuzzy energy self learning engine sensor fault diagnosis methods of high effectiveness,overcoming the interference to the harmful effects of fault diagnosis.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117