检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:莫愿斌[1] 刘付永[2] 马彦追[2] 张宇楠[2]
机构地区:[1]广西民族大学广西混杂计算与集成电路设计分析重点实验室,广西南宁530006 [2]广西民族大学理学院,广西南宁530006
出 处:《计算机与应用化学》2013年第6期671-676,共6页Computers and Applied Chemistry
基 金:中国博士后基金(2012M511711);广西教育厅项目(201204LX082);广西民族大学项目(2011MDYB030);广西混杂计算与集成电路设计分析重点实验室开放基金(2012HCI09)
摘 要:针对基本萤火虫优化(GSO)算法在求解函数全局最优值时,存在着易陷入局部最优、收敛速度慢和求解精度低等问题,提出了1种基于生物捕食-被捕食(Predator-Prey)行为的双种群GSO算法(GSOPP)。该算法通过引入种群间的追逐与逃跑以及变异等策略加快了收敛速度,且能获得精度更高的解。最后,通过对8个标准测试函数进行测试,结果表明,改进后的GSOPP算法比基本GSO算法有更优的性能。According to the basic glowworm swarm optimization (GSO) algorithm in solving the function of global optimal value existing some problems, such as easy to fall into local optimum, slow convergence and low precision, an artificial glowworm swarm optimization algorithm based biological predator-prey behavior (GSOPP) is proposed. The algorithm through populations chase and escape, and the mutation strategy to speed up the convergence rate, and can obtain a more accurate solution. Finally, the test results of 8 standard test functions show that, the improved GSOPP algorithm than the basic GSO algorithm has Better performance.
关 键 词:萤火虫算法(GSO) 捕食-被捕食行为 变异策略
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222