检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹玖新[1,2] 董丹[1,2] 毛波[3] 王田峰[1,2]
机构地区:[1]东南大学计算机科学与工程学院,南京211189 [2]东南大学网络和信息集成教育部重点实验室,南京211189 [3]南京财经大学江苏省电子商务重点实验室,南京210003
出 处:《Journal of Southeast University(English Edition)》2013年第2期134-138,共5页东南大学学报(英文版)
基 金:The National Basic Research Program of China(973 Program)(No.2010CB328104,2009CB320501);the National Natural Science Foundation of China(No.61272531,61070158,61003257,61060161,61003311,41201486);the National Key Technology R&D Program during the11th Five-Year Plan Period(No.2010BAI88B03);Specialized Research Fund for the Doctoral Program of Higher Education(No.20110092130002);the National Science and Technology Major Project(No.2009ZX03004-004-04);the Foundation of the Key Laboratory of Netw ork and Information Security of Jiangsu Province(No.BM2003201);the Key Laboratory of Computer Netw ork and Information Integration of the Ministry of Education of China(No.93K-9)
摘 要:In order to effectively detect malicious phishing behaviors, a phishing detection method based on the uniform resource locator (URL) features is proposed. First, the method compares the phishing URLs with legal ones to extract the features of phishing URLs. Then a machine learning algorithm is applied to obtain the URL classification model from the sample data set training. In order to adapt to the change of a phishing URL, the classification model should be constantly updated according to the new samples. So, an incremental learning algorithm based on the feedback of the original sample data set is designed. The experiments verify that the combination of the URL features extracted in this paper and the support vector machine (SVM) classification algorithm can achieve a high phishing detection accuracy, and the incremental learning algorithm is also effective.为了有效检测恶意网络钓鱼(phishing)行为,提出一种基于URL特征的phishing检测方法.该方法首先对现有钓鱼URL与合法URL进行分析对比,提取钓鱼URL的显著特征,然后采用机器学习算法对样本数据集训练从而获得分类检测模型,用来检测待检测的URL.为适应钓鱼URL的变化,分类模型需要根据新增样本不断更新,因此,设计了一种基于原始样本数据反馈的增量学习算法.实验表明:提取的URL特征与支持向量机(SVM)分类算法的结合能够使phishing检测达到较高的检测精度,且该增量学习算法是有效的.
关 键 词:uniform resource locator (URL) features phishingdetection support vector machine incremental learning
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.251.83