检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京交通大学电子信息工程学院,北京100044
出 处:《计算机技术与发展》2013年第7期14-17,21,共5页Computer Technology and Development
基 金:国家自然科学基金资助项目(61271199);北京交通大学基础研究基金(W11JB00630)
摘 要:用户聚类分析是数据挖掘中的重要手段。文中根据视频应用的特点,在传统的RFM模型基础上,提出一种根据用户观看行为对用户进行聚类的方法:Video-RFM聚类法。利用该方法,文中对中国最大的网络电视运营商PPTV的客户端用户进行了聚类分析。在此基础上,提出了一套将Video-RFM聚类法所使用的用户行为指标,映射到用户忠诚度指数的有效方法。经过实际数据验证发现,Video-RFM方法能够成功地区分行为差异较大的用户群,同时也能够很好地区分用户忠诚度。文中提出的聚类方法对了解视频系统的用户行为具有普遍的参考价值。文中对用户忠诚度的定量研究,对企业优化产品质量具有实际意义。User clustering analysis is an important method for network operators to study user behavior and develop their marketing strategies. In this paper,provide a new method,Video-RFM analysis,to cluster the users of an online video system based on the RFM analysis which has been widely used in marketing planning. Cluster the users of PPTV, one of the largest online video providers in China, by Vide- o-RFM model and find out several groups of users with distinguished behavior patterns. Furthermore, quantitatively evaluate customer loyalty of each group of users with Analytic Hierarchy Process (AHP) and provide an efficient algorithm for computing customer loyalty parameter. The results show that Video-RFM analysis is an effective method of mining user behavior and evaluating user loyalty. This clustering method has implications for user behavior analysis while the way to evaluate customer loyalty has practical implications for online video operators.
关 键 词:视频网络 RFM模型 用户聚类分析 层次分析法 用户忠诚度
分 类 号:TP31[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28