机构地区:[1]College of Resources and Environmental Sciences, Nanjing Agricultural University
出 处:《Pedosphere》2013年第4期523-531,共9页土壤圈(英文版)
基 金:Supported by the National Natural Science Foundation of China (Nos. 30900210 and 41171206);the Special Project for the National Soil Environmental Investigation of China;the Priority Academic Program Development of Jiangsu Higher Education Institutions(PADA) of China
摘 要:Earthworms can promote the bioremediation of contaminated soils through enhancing plant growth and microorganism development. The individual and combined effects of earthworms and ryegrass (Lolium multifloram Lain.) on the removM of fiuoranthene from a sandy-loam alluvial soil were investigated in a 70-d microcosm experiment. The experiment was set up in a complete factorial design with treatments in four replicates: without earthworms or ryegrass (control, CK), with earthworms only (E), with ryegrass only (P), and with both earthworms and ryegrass (EP). The residual fluoranthene, microbial biomass C, and polyphenol oxidase activity in the soil changed significantly (P 〈 0.01) with time. In general, the residual concentration of fluoranthene in the soil decreased sharply from 71.8-88.7 to 31.7-37.4 mg kg-1 in 14 d, and then decreased gradually to 19.7-30.5 mg kg-1 on the 70th d. The flu- oranthene concentration left in the soil was the least with both earthworms and ryegrass, compared to the other treatments at the end of the experiment. Half-life times of fluoranthene in the E, P, and EP treatments were 17.8%-36.3% smaller than that of CK. More fluoranthene was absorbed by earthworms than ryegrass. However, the total amounts of fluoranthene accumulated in both the ryegrass and earthworms were small, only accounting for 0.01%-1.20% of the lost fluoranthene. Therefore, we assumed that microbial degradation would play a dominant functional role in fluoranthene removal from soil. We found that earthworms significantly increased microbial biomass C and polyphenol oxidase activity (P 〈 0.01) in the presence of ryegrass at the end of the experiment. Furthermore, microbial biomass C and polyphenol oxidase activity were significantly (P 〈 0.05) and negatively related to the residual fluoranthene concentration. This implied that earthworms might promote the removal of fluoranthene from soil via stimulating microbial biomass C and polyphenol oxidase activity.Earthworms can promote the bioremediation of contaminated soils through enhancing plant growth and microorganism development. The individual and combined effects of earthworms and ryegrass (Lolium multiflorum Lam.) on the removal of fluoranthene from a sandy-loam alluvial soil were investigated in a 70-d microcosm experiment. The experiment was set up in a complete factorial design with treatments in four replicates: without earthworms or ryegrass (control, CK), with earthworms only (E), with ryegrass only (P), and with both earthworms and ryegrass (EP). The residual fluoranthene, microbial biomass C, and polyphenol oxidase activity in the soil changed significantly (P<0.01) with time. In general, the residual concentration of fluoranthene in the soil decreased sharply from 71.8-88.7 to 31.7-37.4 mg kg 1 in 14 d, and then decreased gradually to 19.7-30.5 mg kg 1 on the 70th d. The fluoranthene concentration left in the soil was the least with both earthworms and ryegrass, compared to the other treatments at the end of the experiment. Half-life times of fluoranthene in the E, P, and EP treatments were 17.8%-36.3% smaller than that of CK. More fluoranthene was absorbed by earthworms than ryegrass. However, the total amounts of fluoranthene accumulated in both the ryegrass and earthworms were small, only accounting for 0.01%-1.20% of the lost fluoranthene. Therefore, we assumed that microbial degradation would play a dominant functional role in fluoranthene removal from soil. We found that earthworms significantly increased microbial biomass C and polyphenol oxidase activity (P<0.01) in the presence of ryegrass at the end of the experiment. Furthermore, microbial biomass C and polyphenol oxidase activity were significantly (P<0.05) and negatively related to the residual fluoranthene concentration. This implied that earthworms might promote the removal of fluoranthene from soil via stimulating microbial biomass C and polyphenol oxidase activity.
关 键 词:microbial biomass C microbial degradation plant growth polyphenol oxidase activity residual concentration
分 类 号:X53[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...