基于自适应熵估计遗传算法的高级在轨系统虚拟信道调度  

AOS Virtual Channel Scheduling Based on Genetic Algorithm of Adaptive Entropy Estimation

在线阅读下载全文

作  者:别玉霞[1,2] 刘海燕[2,3] 潘成胜[1,3] 

机构地区:[1]南京理工大学自动化学院,江苏南京210094 [2]大连大学信息工程学院,辽宁大连116622 [3]辽宁省通信网络与信息处理重点实验室,辽宁大连116622

出  处:《信息与控制》2013年第3期333-340,共8页Information and Control

基  金:国家863计划资助项目(2011AAXX04);辽宁省教育厅科研项目(L20111217)

摘  要:针对空间数据业务的多类型、大容量等特点,基于AOS(advanced orbiting system)虚拟信道复用技术,分析了AOS虚拟信道调度的多约束问题,建立了AOS虚拟信道调度模型,提出了一种基于自适应熵估计遗传算法(AEEGA)的AOS虚拟信道调度算法.该算法能够根据种群熵和个体适应度自适应调整交叉概率与变异概率,并设计了基于各进化算子的虚拟信道调度流程.实验结果表明,该算法能保证高优先级虚拟信道较低的包剩余量、丢包率和延时,并可保持较好的公平性,比自适应遗传算法的全局搜索能力更强,比动态优先级调度算法的总体满意度更高.For multi-type and high-capacity of space data based on AOS (advanced orbiting system) virtual channel mul- tiplexing technology, the constraints problem on AOS virtual channel scheduling are analyzed, and an AOS virtual channel scheduling model is established. Furthermore, an AOS virtual channel scheduling algorithm based on adaptive entropy esti- mating genetic algorithm (AEEGA) is proposed. The algorithm can adaptively adjust the crossover probability and mutation probability according to populations' entropy and individuals' fitness. The virtual channels' scheduling flow is designed based on evolution operation. Experimental results show that the algorithm can maintain high-priority services' excellent perfor- mances of packets residual, packets dropping rate and delay, and keep preferable fairness for all virtual channels. Meanwhile, it has stronger global searching ability than adaptive genetic algorithm and higher overall satisfaction than dynamic priority scheduling algorithm.

关 键 词:高级在轨系统 虚拟信道调度 遗传算法 种群熵 

分 类 号:V557.1[航空宇航科学与技术—人机与环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象