A satellite schedulability prediction algorithm for EO SPS  被引量:8

A satellite schedulability prediction algorithm for EO SPS

在线阅读下载全文

作  者:Li Jun Li Jun Jing Ning Hu Weidong Chen Hao 

机构地区:[1]College of Electronic Science and Engineering, National University of Defense Technology

出  处:《Chinese Journal of Aeronautics》2013年第3期705-716,共12页中国航空学报(英文版)

基  金:the National Natural Science Foundation of China(Nos.61174159 and 61101184)

摘  要:With notably few exceptions, the existing satellite mission operations cannot provide the ability of schedulability prediction, including the latest satellite planning service (SPS) standard–Sensor Planning Service Interface Standard 2.0 Earth Observation Satellite Tasking Extension (EO SPS) approved by Open Geospatial Consortium (OGC). The requestor can do nothing but waiting for the results of time consuming batch scheduling. It is often too late to adjust the request when receiving scheduling failures. A supervised learning algorithm based on robust decision tree and bagging support vector machine (Bagging SVM) is proposed to solve the problem above. The Bagging SVM is applied to improve the accuracy of classification and robust decision tree is utilized to reduce the error mean and error variation. The simulations and analysis show that a prediction action can be accomplished in near real-time with high accuracy. This means the decision makers can maximize the probability of successful scheduling through changing request parameters or take action to accommodate the scheduling failures in time.With notably few exceptions, the existing satellite mission operations cannot provide the ability of schedulability prediction, including the latest satellite planning service (SPS) standard–Sensor Planning Service Interface Standard 2.0 Earth Observation Satellite Tasking Extension (EO SPS) approved by Open Geospatial Consortium (OGC). The requestor can do nothing but waiting for the results of time consuming batch scheduling. It is often too late to adjust the request when receiving scheduling failures. A supervised learning algorithm based on robust decision tree and bagging support vector machine (Bagging SVM) is proposed to solve the problem above. The Bagging SVM is applied to improve the accuracy of classification and robust decision tree is utilized to reduce the error mean and error variation. The simulations and analysis show that a prediction action can be accomplished in near real-time with high accuracy. This means the decision makers can maximize the probability of successful scheduling through changing request parameters or take action to accommodate the scheduling failures in time.

关 键 词:Bagging support vector machine CLASSIFIERS Pattern recognition Remote sensing Robust decision tree Satellite schedulability prediction Sensor planning service 

分 类 号:TN927[电子电信—通信与信息系统] TP212[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象