极点均值型经验模式分解及其去噪应用  被引量:4

Extrema-mean empirical mode decomposition and its application of denoising

在线阅读下载全文

作  者:熊兴隆[1] 李猛[1] 蒋立辉[1] 冯帅[1] 

机构地区:[1]中国民航大学天津市智能信号与图像处理重点实验室,天津300300

出  处:《红外与激光工程》2013年第6期1628-1634,共7页Infrared and Laser Engineering

基  金:国家自然科学基金(41075013);中央高校基本科研基金(ZXH2011D003);中国民航大学校内基金(05yk22m)

摘  要:使用经验模式分解(EMD)对信号进行去噪时,由于EMD本身会产生模态混叠,往往很难将噪声完全分离。针对这一问题,提出了一种新型的极点均值型EMD方法,并且给予固有模态函数(IMF)一个新的定义。首先,将相邻极点平均以求得均值包络,然后迭代相减进而获得IMF。最后用原始信号减去分离出的高频IMF实现去噪。随机信号仿真以及激光雷达回波信号去噪实验表明,该方法与EMD分解相比,可以更好地将噪声分离,有效地抑制模态混叠,更可以极大地减小均方误差。因此,极点均值型EMD拥有很好前景。Using empirical mode decomposition (EMD) for denoising, it's difficult to remove the noise from the signal because of the mode mixing in EMD. Aiming at this problem, a new method was proposed that is extrema-mean empirical mode decomposition (Extrema-mean EMD), making a new definition of intrinsic mode function (IMF). Firstly, the average of each two successive extrema was calculated and the mean curve was obtained. Secondly, the mean curve was subtracted from the signal iteratively, and then the IMF was got. Finally, the high frequence IMF were removed from the original signal for denoising. Through the random signal simulation and lidar return signals de-noising experiment, it's turned out that compared with the EMD, the Extrema-mean EMD could restrain the mode mixing and remove the noise from the signal effectively. This method can decrease the MSE of the denoised signal significantly. Therefore, the Extrema-mean EMD has a promising future.

关 键 词:极点均值型经验模式分解 固有模态函数 模态混叠 去噪 

分 类 号:TN958.98[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象