检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]内蒙古大学数学科学学院,呼和浩特010021
出 处:《物理学报》2013年第14期301-306,共6页Acta Physica Sinica
基 金:国家自然科学基金(批准号:11062005;11202092);非线性力学国家重点实验室开放基金;内蒙古自治区高等学校青年科技英才支持计划(批准号:NJYT-13-A02);内蒙古自治区自然科学基金(批准号:2010BS0107;2012MS0107);内蒙古自治区自然科学基金重点项目(批准号:2009ZD01);内蒙古大学学科带头人科研启动基金(批准号:Z20080211);内蒙古自治区研究生教育创新计划项目;内蒙古大学提升综合实力项目(批准号:1402020201)资助的课题~~
摘 要:研究了微平行管道内线性黏弹性流体的非定常电渗流动,其中线性黏弹性流体的本构关系是由Jeffrey流体模型来描述的.利用Laplace变换法,求解了线性化的Poisson-Boltzmann方程、非定常的柯西动量方程和Jeffrey流体本构方程,给出了黏弹性Jeffrey流体电渗速度的解析表达式,分析了无量纲弛豫时间λ1和滞后时间λ2对速度剖面的影响.发现滞后时间为零时,弛豫时间越小,速度剖面图越接近牛顿流体的速度剖面图;随着弛豫时间和滞后时间的增加,速度振幅也变得越来越大,随着时间的增加,速度逐渐趋于恒定.In this study, analytical solutions are presented for the unsteady electroosmotic flow of linear viscoelastic fluid between microparallel plates. The linear viscoelastic fluid used here is described by the general Jeffrey model. Using Laplace transform method, the solution involves analytically solving the linearized Poisson-Boltzmann equation, together with the Cauchy momentum equation and the general Jeffrey constitutive equation. By numerical computations, the influences of the dimensionless relaxation time λ1 and retardation time λ2 on velocity profile are presented. In addition, we find that when the retardation time is zero, the smaller the relaxation time, the more close to the Newtonian fluid velocity profile the velocity profile is. With the increases of the relaxation time and the retardation time, the velocity amplitude also becomes bigger and bigger. As time goes by, the velocity tends to be stable gradually.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.32.150