检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢彩侠[1] 胡亚楠[1] 左春芳[1] 白雁[1] 雷敬卫[1] 王星[1]
机构地区:[1]河南中医学院药学院药物分析教研室,河南郑州450008
出 处:《复旦学报(医学版)》2013年第4期431-435,共5页Fudan University Journal of Medical Sciences
基 金:河南省高等学校青年骨干教师项目(2010GGJS-134);河南省教育厅自然科学研究项目(2011A360021);河南省教育厅科学技术重点研究项目(13A360584)~~
摘 要:目的利用近红外漫反射光谱(near-infraed spectroscopy,NIRS)结合TQ软件快速测定盾叶薯蓣药材中薯蓣皂苷元含量。方法采集盾叶薯蓣样品的近红外光谱图,采用高效液相色谱法(HPLC)测定盾叶薯蓣中薯蓣皂苷元的含量,利用TQ软件建立薯蓣皂苷元的定量分析模型,利用模型对未知样品进行预测。结果建立的薯蓣皂苷元校正模型的相关系数(R2)、校正均方差(RMSEC),内部交叉验证均方差(RMSECV)分别为0.96459,0.0999,0.30041;经外部验证,模型的预测相关系数(R2)和预测均方差(RMSEP)分别为0.9634,0.128。结论所建模型预测能力较好,可以用于盾叶薯蓣中薯蓣皂苷元含量的快速检测。Objective To determine the Diosgenin in Dioscorea zingiberensis C. H. Wright by near- infraed spectroscopy (NIRS) combined with TQ software. Methods NIRS of Dioscorea zingiberensis C. H. Wright was collected, the content of diosgenin were determined in the samples by HPLC,and the quantitative calibration model was established with TQ software. Then, the prediction samples were anylized by the model. Results The correlation coefficients (R2) ,the root-mean-square error of calibration (RMSEC) and the root-mean-square error of cross-validation (RMSECV) of the quantitative calibration model for diosgenin were 0. 96459, 0. 0999 and 0. 30041 respectively; the correlation coefficients of prediction (R2) and the root-mean-square error of prediction (RMSEP) were 0. 9634 and 0. 128. Conclusions The predication of themodle was good,and could be used to predict the diosgenin inDioscorea zingiberensis C. H. Wright.
关 键 词:近红外漫反射光谱(NIRS) TQ软件 盾叶薯蓣 薯蓣皂苷元 定量模型
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.77.203