填补法与高斯定理结合解决非对称静电场问题  被引量:2

Solving Asymmetric Electrostatic Field Problems through Combined Filling Method and Gauss's Theorem

在线阅读下载全文

作  者:魏生贤[1] 陈光学[1] 陶昌[1] 

机构地区:[1]曲靖师范学院物理与电子工程学院,云南曲靖655011

出  处:《曲靖师范学院学报》2013年第3期23-26,共4页Journal of Qujing Normal University

基  金:曲靖师范学院校级精品课程<电磁学>建设项目资助

摘  要:高斯定理是静电场中的基本定理,是电磁学教学的重点和难点之一.学生对高斯定理的应用大多局限于求解对称静电场问题.为提升学生的逻辑推理能力,扩大高斯定理的应用范围,通过将填补法与高斯定理结合,可用于求解部分非对称静电场问题.实例分析表明,填补法与高斯定理结合求解非对称静电场问题还可避免繁难的数学积分,让学生利用已学知识快速解决类似的静电场问题.Gauss's theorem is a fundamental theorem in electrostatic fields,which is also one of the emphases and difficulties of the teaching contents in electromagnetics.College students’applications of Gauss's theorem are mostly limited to solving symmetric problems in electrostatic fields.In order to improve the logical reasoning abilities of college students and extend application area of Gauss's theorem,partial asymmetric electrostatic field problems have been analyzed and solved by using Gauss's theorem and filling method.Case studies reveal that filling method and Gauss's theorem combined to solve asymmetric electrostatic field can avoid troublesome mathematical integration and help college students use learned knowledge quickly solve similar electrostatic field problems.

关 键 词:填补法 高斯定理 非对称静电场 电场强度 

分 类 号:O441[理学—电磁学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象