域名请求行为特征与构成特征相结合的域名变换检测  被引量:1

Detecting Domain Flux Through Patterns of Domain Names' Alphanumeric Characters and Querying Behavior of Hosts

在线阅读下载全文

作  者:张永斌[1] 陆寅[1] 张艳宁[1] 

机构地区:[1]西北工业大学计算机学院,西安710029

出  处:《西安交通大学学报》2013年第8期54-60,共7页Journal of Xi'an Jiaotong University

基  金:国家自然科学基金资助项目(60903126;60872145)

摘  要:针对僵尸网络为避免域名黑名单封堵而广泛采用域名变换技术的问题,提出一种域名请求行为特征与域名构成特征相结合的僵尸网络检测方法。该方法通过支持向量机(SVM)分类器对网络中主机解析失败的域名进行分析,提取出可疑感染主机;通过新域名聚类分析,将请求同一组新域名的主机集合作为检测对象,分析请求主机集合是否由可疑感染主机构成,提取出僵尸网络当前使用的域名集合以及命令与控制(Command and Control,C&C)服务器使用的IP地址集合。实验结果表明:训练后SVM分类器可达98.5%以上的准确率;经对ISP域名服务器监测,系统可准确提取出感染主机和C&C服务器的IP地址。The technique of domain flux has been used by many botnets to avoid being blocked by domain blacklists. A new technique is proposed to detect botnets by analyzing the patterns inherent to domains that comprise alphanumeric characters and query behavior of hosts. The method analyzes failed domain queries through support vector machine (SVM) to identify suspicious compromised hosts. Clustering analyses are then performed to generate new successful domains and the groups of hosts that query these domains, and to examine if these host groups are composed of compromised hosts. Then, the command and control (C&C) domains and related IP addresses used by botnets are detected. Experimental results show that the accuracy of SVM prediction reaches more than 98.5% after training, and that the system can accurately detect compromised hosts and IP of C&C servers when DNS traffic from the ISP is monitored.

关 键 词:网络安全 僵尸网络 域名 域名变换 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象