检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:浩宇 景元书[1] 马晓群[2] 耿利宁[1] 杨沈斌[1]
机构地区:[1]南京信息工程大学江苏省农业气象重点实验室/南京信息工程大学应用气象学院,南京210044 [2]安徽省气象科学研究所,合肥230002
出 处:《中国农业气象》2013年第4期425-433,共9页Chinese Journal of Agrometeorology
基 金:公益性行业(气象)科研专项(GYHY20090622);江苏省"青蓝工程"与"六大人才高峰"资助项目;江苏高校优势学科建设工程(PAPD)项目;"十二五"农村领域国家科技计划项目(2011BAD32B01)
摘 要:以2010—2011年安徽宣城两个水稻品种(两优6326,南粳44)3个播期(5月5日、15日、25日)水稻生长发育观测数据为基础,结合当地气象、土壤等数据,将2010年数据作为校准数据对ORYZA2000模型进行参数校正,调试决定作物基本参数,以2011年数据作为检验数据,对水稻生育期、叶面积指数、生物量及产量等指标进行模拟并将结果进行统计验证与评价。结果表明,对水稻生育期发育速率的模拟显示,两优6326的大部分生育期发育速率稍高于南粳44,第三播期两优6326基本营养阶段及生殖生长阶段的发育速率最大,第三播期南粳44穗分化阶段的发育速率最小;水稻生育期模拟值均比实测值小,其差异为2~7d。生育期长度的归一化均方根误差(NRMSE)为3.4%~7.5%;两组数据所得地上总生物量的NRMSE为16%-22%、绿叶生物量的NRMSE为20%-25%、茎生物量的NRMSE为17%~21%、穗生物量的NRMSE为19%-25%、叶面积指数的NRMSE为24%~26%,其总生物量及产量的NRMSE分别为6%~13%和5%-14%。模拟结果表明ORYZA2000模型可以通过校准作物参数,较准确地模拟水稻发育期、发育速率及其生物量的动态积累过程。Simulation was conducted in Xuancheng, Anhui by using of ORYZA2000 model based on observed data of two rice varieties ( Liangyou - 6326, Nanjing - 44 ) under three different sowing-date ( May 5, 15, 25 ), daily meteorological data as well as soil data during the period from 2010 to 2011. Observed data in 2010 was specified as calibration data set to calibrate model parameters, while observed data in 2011 were classified as validation data set to estimate rice development stages, leaf area index, biomass and yield. The results showed that most rice growth stage development rate of Liangyou - 6326 was slightly higher than that of Nanjing - 44, the basic nutrition and reproductive stage growth rate of Liangyou -6326 in the third sowing date was largest. However, the growth rate of spike differentiation stage of Nanjing - 44 was less, the simulated value of rice growing period was smaller than measured value, the difference was 2 -7d. Furthermore, the normalized root mean square error (NRMSE) of different development stages ranged from 3.4% to 7.5%. While the NRMSE of other rice parameters were 16% - 22% for aboveground biomass, 20%-25% for green leaves biomass, 17%-21% for stem biomass, 19%-25% for panicle biomass, 24% - 26% for leaf area index, 6% - 13% for final biomass, and 5% - 14% for yield. Over all, ORYZA2000 model could be applied to obtain satisfied simulations of rice growth, development stages and dynamic process of dry matter accumulation on the basis of crop parameter calibration.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28