检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李玲俐[1]
出 处:《计算机应用与软件》2013年第8期65-67,共3页Computer Applications and Software
基 金:国家自然科学基金项目(61104135);广东省自然科学基金项目(101754539192000000)
摘 要:针对传统模糊C均值聚类算法只能发现"类球状"簇和对分量属性数据敏感的缺点,提出一种基于FCM的属性分解聚类再融合的分类算法。该算法将信息融合的思想应用于聚类算法,先在每个分量属性维度进行聚类,然后对各属性的聚类结果进行融合分析并得到聚类结果。独立对每个分量属性聚类的思想为算法的并行实现提供便利。实验结果表明,该算法不但能有效提高聚类的准确度,而且不需要提前对数据进行归一化处理,在分量属性量测数据存在偏差时仍然表现出良好的鲁棒性。Aiming at the deficiencies of traditional fuzzy c-means (FCM) clustering that it can only find ball-like clusters and is sensitive to attribute data of components, a classification algorithm of FCM-based attribute decomposition clustering re-fusion (FFBAD) is proposed in this paper. This algorithm introduces the idea of information fusion to clustering algorithm, makes clustering on attribute dimension of every component first, and then fuses and analyses the clustering results of each attribute to yield the clustering result. The idea of clustering the attribute of each component independently makes it convenient in parallel implementation of algorithm. Experimental results show that this algorithm can improve clustering accuracy, and does not need to perform normalised processing on data in advance. Moreover, it can also demonstrate good robustness when the deviation exists in measuring data of component attribute.
分 类 号:TP391.42[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.21.43.72