检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王振华[1] 马宇[1] 贺志宏[1] 董士奎[1]
机构地区:[1]哈尔滨工业大学能源学院,黑龙江哈尔滨150001
出 处:《工程热物理学报》2013年第8期1543-1547,共5页Journal of Engineering Thermophysics
基 金:国家自然科学基金项目(No.51176039);教育部博士点基金(No.20102302110015)
摘 要:热辐射传递具有非灰性、方向性、全场性的特点,这使得基于CFD框架下整体的燃烧-流动-辐射场模拟工作中往往辐射模块占用大量计算时间和计算资源。为提高复杂流场计算效率,目前在CFD已经开始使用分区并行计算技术。相对而言,辐射换热计算技术发展落后于流动计算技术。本文将分区并行计算技术引入到参与性介质辐射传输求解当中,采用离散坐标法结合并行计算环境MPI,对辐射传输分区并行计算方案、数值边界网格处理方法、数据交换方式进行研究,并通过对矩形炉膛内辐射场进行求解,验证分区并行方法的可行性,结果表明分区并行计算结果与没有分区能够很好地吻合,并获得了较高的并行效率。Radiative heat transfer has the non-gray, fullfill and directional characteristics, which makes the simulation calculation of radiative heat transfer based on the coupling of combustion, flow fluid and radiative heat transfer fluid an extremely time-consuming and memory-intensive module. Nowadays, the spatial domain decomposition parallelization (DDP) method has been used to improve the computational efficiency in complex flow fluid. In contrast, the parallel computation in radiation transfer field generally drops behind. In this paper, the idea of parallel computation in flow fluid is introduced into radiative heat transfer of participatory media, the parallel computation environment MPI is combined with Discrete Ordinates Method, and the scheme of DDP, the solvent of the grids at numerical boundary and the process of data transfers are studied. And the feasibility of the DDP is validated by calculation of the radiative heat transfer in a rectangular furnace, the result of the DDP for radiation heat transfer agrees with the unpartitioned result very well, and a high parallel efficiency is achieved.
分 类 号:TK124[动力工程及工程热物理—工程热物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.176