Evolution of sedimentary environments of the middle Jiangsu coast, South Yellow Sea since late MIS 3  被引量:10

Evolution of sedimentary environments of the middle Jiangsu coast, South Yellow Sea since late MIS 3

在线阅读下载全文

作  者:XIA Fei ZHANG Yongzhan WANG Qiang YIN Yong Karl W. WEGMANN J. Paul LIU 

机构地区:[1]Department of Coastal Ocean Science, School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China [2]The Key Laboratory of Coastal and Island Development, Ministry of Education, Nanjing University, Nanjing 210093, China [3]Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695 USA [4]Tianjin Institute of Geology and Mineral Resources, China Geological Survey Bureau, Tianjin 300170, China

出  处:《Journal of Geographical Sciences》2013年第5期883-914,共32页地理学报(英文版)

基  金:National Basic Research Program of China(973 Program),No.2013CB956500;National Natural Science Foundation of China,Nos.40776023 & 40872107;Comprehensive Investigation and Assessment in Jiangsu Offshore Area,Nos.JS-908-01-05&JS-908-01-101;Special Fund for Marine Scientific Research in the Public Interest,No.201005006;Special Fund for Land and Resources Research in the Public Interest,No.201011019;China State-Sponsored Postgraduate Study Aboard Program,No.2011619035

摘  要:An evolutionary model of sedimentary environments since late Marine Isotope Stage 3 (late MIS 3, i.e., ca. 39 cal ka BP) along the middle Jiangsu coast is presented based upon a reinterpretation of core 07SR01, new correlations between adjacent published cores, and shallow seismic profiles recovered in the Xiyang tidal channel and adjacent northern sea areas. Geomorphology, sedimentology, radiocarbon dating and seismic and sequence stratigraphy are combined to confirm that environmental changes since late MIS 3 in the study area were controlled primarily by sea-level fluctuations, sediment discharge of paleo-rivers into the South Yellow Sea (SYS), and minor tectonic subsidence, all of which impacted the progression of regional geomorphic and sedimentary environments (Le., coastal barrier island freshwater lacustrine swamp, river floodplain, coastal marsh, tidal sand ridge, and tidal channel). This resulted in the formation of a fifth-order sequence stratigraphy, comprised of the parasequence of the late stage of the last interstadial (Para-Sq2), including the highstand and forced regressive wedge system tracts (HST and FRWST), and the parasequence of the postglacial period (Para-Sql), including the transgressive and highstand system tracts (TST and HST). The tidal sand ridges likely began to develop during the postglacial transgression as sea-level rise covered the middle Jiangsu coast at ca. 9.0 cal ka BP. These initially submerged tidal sand ridges were constantly migrating until the southward migration of the Yellow River mouth to the northern Jiangsu coast during AD 1128 to 1855. The paleo-Xiyang tidal channel that was determined by the paleo-tidal current field and significantly different from the modern one, was in existence during the Holocene transgressive maxima and lasted until AD 1128. Following the capture of the Huaihe River in AD 1128 by the Yellow River, the paleo-Xiyang tidal channel was infilled with a large amount of river-derived sediments from AD 1128 to 1855, causiAn evolutionary model of sedimentary environments since late Marine Isotope Stage 3 (late MIS 3, i.e., ca. 39 cal ka BP) along the middle Jiangsu coast is presented based upon a reinterpretation of core 07SR01, new correlations between adjacent published cores, and shallow seismic profiles recovered in the Xiyang tidal channel and adjacent northern sea areas. Geomorphology, sedimentology, radiocarbon dating and seismic and sequence stratigraphy are combined to confirm that environmental changes since late MIS 3 in the study area were controlled primarily by sea-level fluctuations, sediment discharge of paleo-rivers into the South Yellow Sea (SYS), and minor tectonic subsidence, all of which impacted the progression of regional geomorphic and sedimentary environments (Le., coastal barrier island freshwater lacustrine swamp, river floodplain, coastal marsh, tidal sand ridge, and tidal channel). This resulted in the formation of a fifth-order sequence stratigraphy, comprised of the parasequence of the late stage of the last interstadial (Para-Sq2), including the highstand and forced regressive wedge system tracts (HST and FRWST), and the parasequence of the postglacial period (Para-Sql), including the transgressive and highstand system tracts (TST and HST). The tidal sand ridges likely began to develop during the postglacial transgression as sea-level rise covered the middle Jiangsu coast at ca. 9.0 cal ka BP. These initially submerged tidal sand ridges were constantly migrating until the southward migration of the Yellow River mouth to the northern Jiangsu coast during AD 1128 to 1855. The paleo-Xiyang tidal channel that was determined by the paleo-tidal current field and significantly different from the modern one, was in existence during the Holocene transgressive maxima and lasted until AD 1128. Following the capture of the Huaihe River in AD 1128 by the Yellow River, the paleo-Xiyang tidal channel was infilled with a large amount of river-derived sediments from AD 1128 to 1855, causi

关 键 词:Marine Isotope Stage 3 (MIS 3) South Yellow Sea middle Jiangsu coast tidal sand ridge tidal channel sedimentary environment radiocarbon dating seismic stratigraphy sequence stratigraphy 

分 类 号:P512.2[天文地球—地质学] S968.22[农业科学—水产养殖]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象