基于cICA的旋转机械变速过程滚动轴承故障特征提取  被引量:5

Extracting Fault Features of Rolling Bearing During Speed Variation Based on cICA

在线阅读下载全文

作  者:吴川辉[1] 郭瑜[1] 梁瑜[1] 

机构地区:[1]昆明理工大学机电工程学院,昆明650500

出  处:《机械科学与技术》2013年第8期1176-1181,共6页Mechanical Science and Technology for Aerospace Engineering

基  金:教育部留学回国人员科研启动基金项目(教外司留[2009]1590号)资助

摘  要:在ICA基础上发展起来的约束独立分量分析(cICA)方法,可根据一定的先验知识生成参考信号以提取选定的独立分量,解决了原ICA算法的次序不确定性问题。将cICA用于滚动轴承故障诊断,能够根据被监测滚动轴承的特征频率等先验信息建立参考信号并实现对其故障振动特征信号的提取。本文将该方法与针对旋转机械变速过程的阶比跟踪技术和滚动轴承包络分析技术相结合,提出了基于cICA的旋转机械变速工作过程滚动轴承早期故障分析方法。该方法首先通过包络提取技术在共振带获得包含故障信息的包络信号,再通过阶比分析中的等角度采样将包络信号转换到角域,在角域建立参考信号,并用cICA实现旋转机械变速过程下滚动轴承故障对应冲击性信号成分的有效提取。仿真和测试试验表明,所提出方法适合于旋转机械升降速等变速过程中的滚动轴承初期故障特征信息提取。The constrained independent component analysis (clCA) is derived from ICA, a method that can be ap- plied to extracting interesting independent components by relying on some prior information, thus overcoming the uncertainty of classic ICA. The use of clCA for diagnosing the faults of a rolling beating can extract the interesting components of the vibration signal of the faulty bearing according to the prior information on the frequencies of fault features of the bearing. The incorporate order tracking and envelope analysis of clCA are used to effectively extract the fault features of incipient rolling element bearing during speed variation in its angle domain. The fault feature extraction method first obtains envelopes in the resonant frequency band, then applies the even-angle increment re- sampling to convert the envelopes from time domain to angle domain and finally constructs the reference signal for clCA in its angle domain. Both the simulation results and test results show that the method has good performance in extracting the incipient fault features of the bearing of a rotational machine during its speed increase and decrease.

关 键 词:cICA 阶比跟踪 故障诊断 轴承 特征提取 

分 类 号:TH165.3[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象