基于音节的维吾尔语大词汇连续语音识别系统  被引量:5

Syllable based language model for large vocabulary continuous speech recognition of Uyghur

在线阅读下载全文

作  者:努尔麦麦提.尤鲁瓦斯 吾守尔.斯拉木 热依曼.吐尔逊 

机构地区:[1]新疆大学信息科学与工程学院,乌鲁木齐830046

出  处:《清华大学学报(自然科学版)》2013年第6期741-744,共4页Journal of Tsinghua University(Science and Technology)

基  金:新疆维吾尔自治区科技援疆计划项目(201091106);新疆多语种信息处理重点实验室开放课题(049807)

摘  要:维吾尔语是一种黏着语,基于单词的语言模型不太适合于维吾尔语大词汇连续语音识别任务。该文提出了适合维吾尔语的基于音节的语言模型,引入最大匹配分词算法评价音节语言模型在大词汇连续语音识别任务中的单词识别性能。实验结果表明:基于音节的语言模型在未登录词和模型复杂度等方面表现出比基于单词的语言模型更加优越的性能,并且使识别系统的单元错误率比基于单词的系统减少了50%。因此,在维吾尔语语音识别任务上可以将音节作为识别单元。Uyghur is an agglutinative language so word based language models are not the best tools for Uyghur large vocabulary continuous speech recognition(LVCSR) systems.This paper presents a syllable based language model,which is better suited to Uyghur,using a maximum matching word segmentation algorithm to evaluate word recognition performance of the syllable based language model in the LVCSR task.Tests show that the syllable based language model outperforms word based language models in terms of the number of out of vocabulary words(OOVs) and model complexity and that the syllable based system reduces the relative unit error rate by 50% over the word based system.Therefore,Uyghur syllables can be used as recognition units for some speech recognition tasks.

关 键 词:维吾尔语 语音识别 音节语言模型 最大匹配算法 

分 类 号:TP391.42[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象