机构地区:[1]College of Environmental Science and Engineering Guilin University of Technology [2]Guangxi Institute of Building Research & Design [3]Guangxi Polytechnic of Construction
出 处:《Journal of Environmental Sciences》2013年第7期1492-1499,共8页环境科学学报(英文版)
基 金:supported by the National Natural Science Foundation of China(No.51268008,21207024);the Key Project of Chinese Ministry of Education(No.210170,JiaoJiSi[2010]114);the Program for Excellent Talentsin the Guangxi Higher Education Institutions(No.Gui-JiaoRen[2010]65);the Guangxi Scientific Research and Technological Development Plan(No.GuiKeZhuan1298009-17)
摘 要:The kinetics of thedegradation of trace nitrobenzene (NB) by a granular activated carbon (GAC) enhanced microwave (MW)/hydrogen peroxide (H202 ) systemwas studied. Effects of pH, NB initial concentration and tert-butyl alcohol on the removal efficiencywere examined. Itwas found that the reaction rate fitswell to first-order reaction kinetics in the MW/GAC/H202 process. Moreover, GAC greatly enhanced thedegradation rate of NB inwater. Under a given condition (MW power300 W, H202dosage 10 mg/L, pH 6.85 and temperature (60 ± 5)°C), thedegradation rate of NBwas 0.05214 min 1when4 g/L GACwas added. In general, alkaline pHwas better for NBdegradation; however, the optimum pHwas 8.0 in the tested pH value range of4.0-12.0. At H202dosage of 10 mg/L and GACdosage of4 g/L, the removal of NBwasdecreasedwith increasing initial concentrations of NB, indicating that a low initial concentrationwas beneficial for thedegradation of NB. These results indicated that the MW/GAC/H202 processwas effective for trace NBdegradation inwater. Gas chromatography-mass spectrometry analysis indicated that a hydroxyl radical addition reaction anddehydrogenation reaction enhanced NBdegradation.The kinetics of thedegradation of trace nitrobenzene (NB) by a granular activated carbon (GAC) enhanced microwave (MW)/hydrogen peroxide (H202 ) systemwas studied. Effects of pH, NB initial concentration and tert-butyl alcohol on the removal efficiencywere examined. Itwas found that the reaction rate fitswell to first-order reaction kinetics in the MW/GAC/H202 process. Moreover, GAC greatly enhanced thedegradation rate of NB inwater. Under a given condition (MW power300 W, H202dosage 10 mg/L, pH 6.85 and temperature (60 ± 5)°C), thedegradation rate of NBwas 0.05214 min 1when4 g/L GACwas added. In general, alkaline pHwas better for NBdegradation; however, the optimum pHwas 8.0 in the tested pH value range of4.0-12.0. At H202dosage of 10 mg/L and GACdosage of4 g/L, the removal of NBwasdecreasedwith increasing initial concentrations of NB, indicating that a low initial concentrationwas beneficial for thedegradation of NB. These results indicated that the MW/GAC/H202 processwas effective for trace NBdegradation inwater. Gas chromatography-mass spectrometry analysis indicated that a hydroxyl radical addition reaction anddehydrogenation reaction enhanced NBdegradation.
关 键 词:MICROWAVE granular activated carbon hydrogen peroxide NITROBENZENE hydroxyl radicals
分 类 号:X703[环境科学与工程—环境工程] TQ123.6[化学工程—无机化工]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...