Comparison of UV/PDS and UV/H_2O_2 processes for the degradation of atenolol in water  被引量:4

Comparison of UV/PDS and UV/H_2O_2 processes for the degradation of atenolol in water

在线阅读下载全文

作  者:Xiaowei Liu Lei Fang Yongchao Zhou Tuqiao Zhang Yu Shao 

机构地区:[1]Institute of Municipal Engineering, College of Civil Engineering and Architecture, Zhejiang University

出  处:《Journal of Environmental Sciences》2013年第8期1519-1528,共10页环境科学学报(英文版)

摘  要:UV/H2O2 and UV/peroxodisulfate (PDS) processes were adopted to degrade a typical β-blocker atenolol (ATL). The degradation efficiencies under various operational parameters (oxidant dosage, pH, HCO3-, humic acid (HA), NO3- , and Cl-) were compared. Principal factor analysis was also performed with a statistical method for the two processes. It was found that increasing the specific dosage of the two peroxides ([peroxide]0/[ATL]0 ) ranging from 1:1 to 8:1 led to a faster degradation rate but also higher peroxide residual. Within the pH range 3-11, the optimum pH was 7 for the UV/PDS process and elevating pH benefitted the UV/H 2O2 process. The presence of HCO3- , HA, and Cl adversely affected ATL oxidation in both processes. The NO3- concentration 1-3 mmol/L accelerated the destruction of ATL by the UV/PDS process, but further increase of NO3- concentration retarded the degradation process, contrary to the case in the UV/H2O2 process. The rank orders of effects caused by the six operational parameters were pH ≈ specific dosage 〉 [HA]0 〉 [NO3-]0 〉 [HCO3-]0 〉 [Cl-]0 for the UV/H2O2 process and specific dosage 〉 pH 〉 [HA]0 〉 [NO3-]0 〉 [HCO3-]0 〉[Cl-]0 for the UV/PDS process. The UV/PDS process was more sensitive to changes in operational parameters than the UV/H2O2 process but more efficient in ATL removal under the same conditions.UV/H2O2 and UV/peroxodisulfate (PDS) processes were adopted to degrade a typical β-blocker atenolol (ATL). The degradation efficiencies under various operational parameters (oxidant dosage, pH, HCO3-, humic acid (HA), NO3- , and Cl-) were compared. Principal factor analysis was also performed with a statistical method for the two processes. It was found that increasing the specific dosage of the two peroxides ([peroxide]0/[ATL]0 ) ranging from 1:1 to 8:1 led to a faster degradation rate but also higher peroxide residual. Within the pH range 3-11, the optimum pH was 7 for the UV/PDS process and elevating pH benefitted the UV/H 2O2 process. The presence of HCO3- , HA, and Cl adversely affected ATL oxidation in both processes. The NO3- concentration 1-3 mmol/L accelerated the destruction of ATL by the UV/PDS process, but further increase of NO3- concentration retarded the degradation process, contrary to the case in the UV/H2O2 process. The rank orders of effects caused by the six operational parameters were pH ≈ specific dosage 〉 [HA]0 〉 [NO3-]0 〉 [HCO3-]0 〉 [Cl-]0 for the UV/H2O2 process and specific dosage 〉 pH 〉 [HA]0 〉 [NO3-]0 〉 [HCO3-]0 〉[Cl-]0 for the UV/PDS process. The UV/PDS process was more sensitive to changes in operational parameters than the UV/H2O2 process but more efficient in ATL removal under the same conditions.

关 键 词:sulfate radical hydroxyl radical ATENOLOL influencing factors rank order 

分 类 号:X703[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象