检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈曦[1]
机构地区:[1]长江师范学院数学与计算机学院,重庆408100
出 处:《科学技术与工程》2013年第20期5988-5992,共5页Science Technology and Engineering
摘 要:近年来,基于视频的人脸识别吸引了很多人的关注,同时,视觉词袋(BoWs)模型已成功地应用在图像检索和对象识别中。提出了一种基于视频的人脸识别的方法,它利用了视觉单词,在经典的视觉单词中,第一次在兴趣点提取尺度不变特征变换(SIFT)的图像描述;这些兴趣点由高斯差分(DoG)检测,然后基于k均值的视觉词汇生成,使用视觉单词的索引以取代这些描述符。然而,在人脸图像中,由于面部姿势失真,面部表情和光照条件变化,SIFT描述符不是很好。因此,使用仿射SIFT(ASIFT)描述符作为人脸图像表示法。在Yale及ORL人脸数据库上的实验结果表明,在人脸识别中,基于仿射SIFT描述符的视觉单词方法可以获得较低的错误率。Abstract Recent years, face recognition based on video has been concerned by more and more persons. At the same time, Bag-of-visual Words (BoWs) representation has been successfully applied in image retrieval and object recognition recently. In this paper, a video-based face recognition approach which uses visual words is proposed. In classic visual words, Scale Invariant Feature Transform (SIFT) descriptors of an image are firstly extracted on interest points detected by difference of Gaussian (DoG), then k-means-based visual vocabulary generation is applied to replace these descriptors with the indexes of the closet visual words. However, in facial images, SIFT descriptors are not good enough due to facial pose distortion, facial expression and lighting condition variation. In this paper, we use Affine-SIFT (ASIFT) descriptors as facial image representation. Experimental results on Yale and ORL Database suggest that visual words based on Affine-SIFT descriptors can achieve lower error rates in face recognition task.
关 键 词:人脸识别 尺度不变特征变换 仿射SIFT 视觉单词
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3